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PURPOSES AND GENERAL INTRODUCTION 

The purpose of the current work is to extended the investigation of 

the line shape studies of quadrupole nuclei under (a) a combination of 

internal Hamiltonians, (b) rapid variable-angle sample spinning and (c) 

coherent or random nuclear dynamic motion. These studies exhibit some 

novel results which either provide a systematic approach to the analysis 

of the quadrupole NMR line shape or to the recognition of new 

qualitative NMR line shape features. 

Strong quadrupole nuclei, which can not be studied by conventional 

transient techniques in conventional NMR, are now studied through: (c.) 

indirectly observing the heteronuclear dipolar interaction reflected in 

the nearby spin 1/2 nucleus NMR spectra and (b) directly observing the 

singularities in the quadrupole (weak Zeeman) regime. These results 

will provide some valuable approaches to the studies of strong 

quadrupole nuclei. 

The structure of the thesis is briefly described as follows: 

Part I: The studies of the NMR spectra line shape under the 

influence of the internal Hamiltonians are based upon the knowledge of 

the spatial dependent transition frequencies of the combined 

Hamiltonians. Hence these spatial relations should be first derived 

before the NMR powder line shape can be calculated. In deriving these 

relations, the concept of the "Effective Hamiltonians" are introduced in 

the first part of the thesis. To demonstrate the accuracy of this line 

shape theory, a static system is examined by the field dependence of the 

characteristic frequency. The mutual orientation of the interaction 

tensor determined are compared with that obtained from single crystal. 



www.manaraa.com

vi 

Part II: The theory obtained from PART I is applied to the spinning 

system of Cs exchanged mordenite. The electric field gradient and the 

local electronic environment of the nucleus is determined by 

monitoring the line shape of the second order quadrupole central 

transition. 

Part III: The theory is further extended from a static system to a 

dynamic system such as ^^Na in NaMo^Og where the quadrupole nucleus of 

interest exhibits a multisite discrete jumping motion. Through the 

studies of the dynamic line shape of the second order central 

transition, the incommensurate structural transition, and the molecular 

dynamics can be distinguished. The position of sodium nuclei can also 

be determined from the dynamic line shape studies. 

Part IV demonstrates that NMR spectra of spinning samples for spin-

half nuclei in the presence of dipolar coupling to quadrupolar 

interaction can be used as an indirect probe for the nearby quadrupolar 

nucleus. This study is applied to in ZrClO Ĥy system where the 

internuclear distance between the spin-half hydrogen nucleus and the 

quadrupole nuclei, CI can be determined. The presence of the phase 

ZrgCli2H is detected by an unpaired electron density as inferred from 

the proton shift following Curie-weiss law. From these line shape 

studies, the proton position can be determined. 
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PART I. FIELD DEPENDENCE OF NMR STATIC POWDER LINE SHAPE: 

STUDIES OF THE MUTUAL ORIENTATION OF INTERACTION 

TENSORS FROM THE FIELD DEPENDENCE OF THE CRITICAL 

FREQUENCIES 
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Field dependence of NMR static powder line shape: 

studies of the mutual orientation of interaction tensors 

from the field dependence of the critical frequencies 

P.J. Chu , B.C. Gerstein, 

Department of Chemistry, Iowa State University 

Energy and Mineral Resources research Institute* 

Ames, Iowa 50011 

*Operated for the US Department of Energy by Iowa State University 

under contract # W-7405-Eng. 82. This research was supported by the 

Assistant Secretary for Energy Research, Office of Energy Sciences, 

WPAS-KC-03-02-01. 
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ABSTRACT 

A procedure for determining the interaction tensor orientations and 

the interaction parameters for mutually oriented electric field gradient 

(e.f.g.) or dipolar and shielding tensors has been developed based upon 

the magnetic field dependence of the critical frequencies from the 

polycrystalline NMR spectrum. Analytical expressions for the field 

dependent critical frequencies have been determined for special 

orientations when the shift principal Z axis lies on the XZ, YZ or XY 

plane of the e.f.g. (or dipolar) tensor. The analytical expressions 

provide a convenient pattern recognition for determining the approximate 

tenscrial orientation and the interaction parameters. For general 

orientations, a numerical procedure has been developed to determine 

these parameters by iteratively minimizing the squares of the 

differences of the calculated and the experimental critical frequencies. 

Higher order perturbation terms can be incorporated in the present 

treatment. 

The method is demonstrated by variable field static proton spectra 

of tri-chloroacetic acid at three different fields (1.3T, 2.3T, 5.2T). 

The near-orthogonal orientation between the dipolar and shielding 

tensors and the interaction parameters obtained from this approach are 

consistent with those obtained previously from single crystal studies. 
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INTRODUCTION 

NMR powder spectra associated with a single inhoraogeneous 

interaction under static conditions, sample spinning, or under the 

influence of molecular motion have been studied.^ In general, however, 

there will exist two or more internal interactions affecting the energy 

levels of a nucleus in a solid. The spectra are therefore different 

from those predicted by a single interaction. A standard approach in 

studying the interactions under the circumstances is to selectively 

average, or suppress one or more interactions by transient techniques in 

NMR2'3 which allow the study of the interaction unaffected. These 

techniques include Magic angle sample spinning (MAS)4'5,6 applied to 

suppress the interactions possessing spatial dependence (3cos^9-l); 

multi-pulse homonuclear decoupling experiments are employed to 

suppress the spin dependent interactions. Numerous 

applications have been reported applying these approaches.^ However 

there are some limitations and drawbacks of these applications: 

(1). The relative orientations of the principal axis of the 

component interaction tensors is completely lost upon applying the MP or 

MAS techniques. The orientation relation of interactions in solids are 

closely related to the molecular or crystal structure and reflect 

indirectly the electronic and bonding structure about the nucleus. 

(2). When a system experiences a nonnegligible dipolar interaction, 

under MAS the intensities of the rotational side bands are modulated not 

only by the shift anisotropy and shift asymmetry, but also by the 

dipolar coupling constant. Extracting the interaction parameters under 

these conditions, requires extensive modification of the formulae 



www.manaraa.com

5 

proposed by Hertzfield and Berger^ where only a single shift interaction 

is considered. 

(3). Due to finit rf power, the condition Hj-f» limits the 

application of the HP techniques to systems of relatively narrow 

inhomogeneous line widths. For strongly dipolar coupled systems or 

those experiencing a Knight shift, the spectrum is subject to 

distortions upon the application of M.P. techniques. When the nuclear 

motion frequency is of the order of the sampling rate (= 50kHz), this 

technique becomes useless. 

(4). Interactions that do not satisfy the special spatial 

dependence required by MAS can only be suppressed but not eliminated. 

The resulting spectra are not independent of the eliminated or 

suppressed interaction. For example the central transition of the 

second order quadrupolar interaction exhibits a residual line shape also 

dependent upon the size and the orientation of the shift interaction, 

although the shift interaction has nominally been eliminated under magic 

angle spinning. 

To avoid the artifacts and to regain the lost information associated 

with the above factors, the most direct and simplest approach from the 

experimental point of view is to study the static spectrum of a single 

crystal.For systems where growing sufficiently large single crystals 

for NMR studies is not possible, the information can in principle be 

extracted from the one-dimensional (1-D) NMR powder spectra. The caveat 

is that the resulting spectrum can be calculated from the interaction 

parameters and the three relative orientation angles. 
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Taylor et al. have studied the static powder line shape of both the 

central transitions of half integer quadrupolar nuclei and the satellite 

transition of nuclei with spin greater then 1/2 in the presence of a 

nonnegligible shift interaction.12,13 To obtain the interaction 

parameters, the powder spectrum governed by the internal interactions is 

iteratively fitted using a least squares routine. A large number of 

calculations and a spectrum of good signal-to-noise ratio are required. 

This method has also been applied to the analysis of ESR spectra to 

determine the orientation between the g tensor and the internal 

Hamiltonians,13 since the spatial orientation of the g tensor can be 

described in. the same manner as the shift (chemical of Knight) tensor. 

Considering the many parameters involved and the insensitivity of the 

NMR spectra to the tensor orientation, this analysis may not be fruitful 

even when spectra of high signal-to-noise ratios are available. 

To provide more experimental data so as to yield unambiguous 

results, two approaches can be taken. The first is to use two 

dimensional (2-D) resolved experiments, and the second is a variable 

field experiment. 

The correlation of tensorial interactions between heteronuclear 

dipolar coupling and chemical shifts has been studied by Linder et al.-^ 

The unique pattern of the ridges shown in the 2-D spectra served as an 

identification of the mutual orientation between the dipolar and the 

shift interactions. From the simulation of the chemical shift resolved 

dipolar powder spectra in the 2-D NMR, the parameters of the individual 

interactions as well as the orientations can be determined. 
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Torgeson et al-^^ and Jones et al.^^ have studied the field 

dependence of the singularities for both the central transition vs. 

Knight shift and the satellite transition vs. Knight shift for half 

integer quadrupole nuclei. These studies show that determination of the 

interaction parameters can be accurately determined by fitting of the 

field dependence of the critical frequencies, instead of using a large 

number of iterative calculations of the powder spectrum. 

The approaches by Creel et al.^^ and by Bauger et al.^B however, 

have assumed that the principal axes of the electric field gradient 

(e.f.g.) tensor and the shielding tensor are coincident. This 

assumption, although reducing three of the eight parameters required to 

describe the spectrum which are essential in both calculating the static 

powder spectrum and the analysis of the critical frequencies, is in 

general not correct. The absence of appropriate pulse techniques to 

resolve the shift from the quadrupolar interaction in the two 

dimensional spectrum makes it impossible to perform the 2-D analysis 

proposed by Linder et al. for quadrupole nuclei. In this report, the 

idea proposed by Barnes of mapping the critical frequencies with the 

magnetic fields is amplified. The general case where the interaction 

tensors are not coincident is considered. The influence of tensor 

orientations upon the static powder spectrum and the most prominent 

features of the spectrum for combined quadrupolar and shift interactions 

are discussed. Finally it is shown that the results are consistent with 

previous studies by Creel and Bauger in which the Euler angles ((X,G, Y) 

between the interactions considered are zero. 
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EFFECTIVE HAMILTONIANS AND THE TRANSIENT DECAY 

Two purposes are served in this section. The first is to derive the 

effective Hamiltonian corresponding to first and second order 

perturbations. Secondly the results are applied to demonstrate that the 

powder averaged transient decay can be derived directly from the 

Liouville-Von Newman equation. 

Using superoperator notation^ the Liouville-Von Newman equation is: 

rp(t))= -iCH^+H^) I p(t)) L-N equation 

here the superoperator is defined as H = [H, ] 

The general solution of the density matrix governed by a time 

independent Hamiltonian is 

!p(t))= exp-if |p(0)) [1] 

Using irreducible spherical tensor operator formalism, i s  g iven 

by2 

"x = I j-k >2] 

The subscript X represents the different interactions with X^Z for 

Zeeman, X?D for dipolar interaction, for chemical shift interaction, 

X^Q for quadrupolar interaction aud X=J for scalar j coupling. The 

indices i, j represent a single spin interaction if i=j and spin-spin 

interactions if ijij. 

The scalar coefficient depends only on the fundamental 

interaction constants and the properties of the nuclear ground state. 
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"^km are the irreducible tensor spin operator for interaction X. 

Details of these tensors can be found in Mehring^ and Haeberlen.^ 

^km the irreducible tensor spatial operators. Transformation of 

these operators under rotations in both physical (spatial) or spin space 

have been given by Haeberlen,^ and Maricq and Waugh.^^ 

For simplicity in the following discussion, is treated as a 

single internal Hamiltonian. With the appearance of two or more 

interactions, as discussed later, represents the sum of all the 

Hamiltonians of the nuclear spin interactions in solids. 

When the Zeeman Hamiltonian is much larger than the internal 

Hamiltonian(s), it is legitimate to retain only the first few terms of 

the series implied by [1] due to the fast convergence of the series. 

Using the factoring theorem for two time independent Hamiltonians, the 

density matrix becomes: 

tp(t)) = Texp-if H\(t')dt'2xp 2 |p(0)) [3] 

iH T 
Where H^(T) = exp |H^) [4] 

and T represents the well known Dyson time ordering operator.^ The 

first term in [3] is conveniently evaluated by the Magnus expansion 

which becomes; 

-iln Hv(T)dT -iH^ t 
Texp = exp [5] 

and H = ... 
0  A A A  
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The averaged Hamiltonian and the next tvo terms are well known 

fS' [61 

^ dt" [7] 

r If 

+[H)^t"'),[H)(t"),H^(t')]]}dt"' [8] 

where t(,, the cycle time, equals one Larmor period In/o^. For shift and 

dipolar interactions which are much smaller then the Zeeman term, the 

averaged term already gives accurate results. The second term 

corresponds to a second order perturbation and is required only for the 

central transition of the half integer quadrupolar spin. 

Before evaluating the truncated Hamiltonian, it is necessary to 

evaluate the internal Hamiltonian, H)^(t) expressed in the Zeeman 

rotating frame. 

H,(t) = exp"i"Dt'IO{ t (-1)^ T*^ } exp^^O^'^O 
A  m = - k  •  - m m  

= ^ . c\-l)™ exp'^^Qtlo ]T^) 
m=-k -m r ' m 

= \ C^-D™ R^ exp'^^^O^lT^) [9] 
m=-K -m ' m 

In the current case, we consider the nucleus to be in the rigid 

lattice of a static sample. Therefore, r|^ is considered to be time-

v<°) = 



www.manaraa.com

11 

independent. The average Harailtonian after integration over one 

Larmor period as from [6] and [9] becomes: 

= C ^ R q T q  k= 0 , l , 2  o n l y  [ 1 0 ]  

Similar to the averaged Harailtonian, the next term in the Magnus 

expansion for a second rank (k=2) tensor which appears in the dipolar 

and quadrupolar interactions can be calculated. The result is 

X 4ii 0 0 mm' -m' -m 

•[ T^,, T^ ]e-in^wo(t"+t')dt" [11] 
^ m' m 

After evaluating the commutators and the double integral according to 

[7], this term is written specifically for the quadrupolar interaction: 

\  9  9 .  9 . 9  9  9  . 9 . 9  9  2  

+ ^6 Rq[R^(IQ+1)I5 + RZ^flQ-l)!^] } [12] 

The first two terms yield identical results to that given by 

VolkofZO and later by Cohen and Reif^l derived using the second order 

perturbation theory for the quadrupolar interaction. The rest of the 

terms although nonsecular have not been averaged to zero according to 
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the averaged Hamiltonian treatment. To evaluate the density matrix 

incorporating the nonsecular Hamiltonian terms requires diagonalization 

of [12]. The influences of the nonsecular terms upon the powder spectra 

are however minor^'l^ and are neglected in order to simplify the 

calculations. 

Higher order terms in the Magnus expansion are harder to evaluate. 

In the high field or in the weak quadrupole limit, the first two terms 

are sufficiently accurate. Under this condition the density matrix, [3] 

can be rewritten according to [5] as 

|p(t))= exp~'^e^fp(0)) [13] 

or can be expressed similar to the L-N equation as follows: 

lp(t))= 1 p(t)) with condition |p(0))=]p(0)) [14] 

and H = [15] 

At this point we want to emphasize that the spatial dependence 

implied in r|, is directly related to the above quantities; the density 

matrix, the effective Hamiltonian, and the averaged Hamiltonian. The 

parameter, S=(0, (j>) denotes this spatial dependence, representing the 

orientation of the principal axes frame of the internal interactions 

with respect to the external field. 

To calculate the spectrum, the expectation value of a transverse 

component of the angular momentum in the time domain is first calculated 

from the stationary state energy levels of an ensemble of nuclei exposed 
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to one or more internal interactions leading to inhomogeneous 

broadening. The powder spectrum is then obtained from the Fourier 

transform of the appropriately apodized time decay. 

The time decay of the magnetization associated with the single 

crystal orientation 2, with phase detection along y can be determined 

once the density matrix is calculated from [13]. 

<I (t,9)> = (Iy|p(t,2)) [16] 

Recall that all terms in [16] are matrixes evaluated in the basis, 

(m>, which makes the effective internal Hamiltonian ITg diagonal. These 

are basically the Zeeman states if the off diagonal terms appearing in 

the v(l) is neglected. By the definition of the trace and noting that 

the propagator U=exp{-.iH^t) is also diagonal, the terms in [16] are 

evaluated as 

<Iy(t, G)> = j^k "jj^y,jk"kk Iy,kj 

^jj^kk ^y,jk^y,kj 

= l<j llylk>l^exp{-i[co.(2)-(^(S)]t} [17] 

The Unn's are the diagonal matrix elements of the propagator exp{-iH"gt}, 

evaluated within the Zeeman basis set |m>. Note that the stationary 

state eigen frequency is given by 

0^(9)= <k|Hg(2) |k> = <k|v^°^2) lk>+ <k 2) |k> [18]  
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Since the transition probability |<j|ly|k>|2 is nonzero only when 

|j-k|=l, the double summation over j and k in [17] is reduced to a 

single summation over each transition k. Equation [17] then becomes: 

<Iy(t,9)> = I P^expC-iAu^tS)] [19] 

Where the k-th single quantum transition frequency for (k j) equals 

with the index subject to the constraint that j=k-l. The 

corresponding transition probability is p^= |<j|ly|k>p, which may be 

evaluated directly from the eigen functions of the problem at hand. For 

example, if the internal Hamiltonians are acting on a spin 1/2 system, 

all transition probabilities are unity. If the internal Hamiltonian is 

acting on a quadrupolar nucleus of spin I, the transition probabilities 

will depend upon the final state of the z component k-1, and calculated 

using the result that |<k-l|ly|k>|2 is proportional to I(I+l)-k(k-l). 

We introduce a relaxation function, g(t) = exp{-t/T2k.} which accounts 

for the incoherent transient processes originating from the nonsecular 

terms that has been neglected previously. Then 

<Iy(t,S)> = ^ Pj^exp{-iA£^(2)}exp(-|^^) [20] 

To obtain the FID of the inhomogeneously broadened lines, a 

superposition of all of the above oscillations for all possible values 

of 9, with individual decays given by the same relaxation function 

exp-{t/T2®^^}, is made. This superposition is made by integrating 

<Iy(t,2)> over all space leading to the powder averaged transient 
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signal; 

<Iy(t,G)> = I J" J" sinede d(j>-Pj^exp{-iûu^(2)}exp(^^ ) [21] 

Thus the only information necessary in calculation of the spectrum 

from the averaged transient decay are the stationary state eigen-

energies , or the transition frequencies as a function of 

orientation parameter Q = (6, 4»). As previously stated in [18] these 

can be directly evaluated from the related first two terms in the Magnus 

expansion, [10] and [12]. 

The NMR spectra can be immediately calculated by the inverse Fourier 

transform of [21]. This procedure of line shape calculation is 

different from that generally used by summing a Lorentzian or Gaussian 

broadened stick spectrum or by other direct methods. In Appendix A, the 

identity between all these methods are demonstrated and the advantages 

of the current scheme are discussed. 

Of particularly interest in the current study is that when more than 

a single interaction is present, transition energies Accj^CS) are the 

differences in energy states of the system associated with any sum of 

the internal interactions leading to inhomogeneous broadening. Examples 

are: (a) shielding plus second order quadrupole; (b) shielding plus two 

body dipole; or (c) a sum of shielding, second order quadrupole and two 

body dipole. The parameter 2 in the multi-interaction case is subject 

to an important constraint that the individual interaction tensors 

orients independently and maintain constant mutual orientations within 

molecular frame or within unit lattice of a solid. As a result, the 

eigen-energies or the transition frequencies for a micro-crystallite 
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orientation; 2 is not a simple sum of the individual spatially dependent 

energies or transition frequencies written as 

0̂ (2) = I 0̂ (2 ) 

but rather this should be 

ŵ (2) = % [22] 

with angles 2^ subject to a fixed mutual orientations between all 

internal interactions. This can be achieved by expressing the spatially 

dependent transition frequencies according to a "referenced" frame (vide 

infra). 
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ORIENTATION DEPENDENT TRANSITION FREQUENCIES 

As mentioned in [21], the spatially dependent transition frequencies 

are the only information required to calculate the NMR line shape. In 

this section we vish to obtain these spatially dependent relations for 

those fundamental interactions involved in the later discussions. The 

procedure to obtain these expressions is briefly discussed. 

First the effective Harailtonian in [15] is determined for the 

individual interactions. In the current study, only the averaged term 

V^) is retained for the dipolar and shift interactions. This 

truncation gives identical results to a first order perturbation. For 

integer spin nuclei, and the satellite transitions (k#l/2) of half 

integer quadrupole nuclei, the effect of higher order terms other then 

the averaged Hamiltonian are also neglected. Ve consider the term 

only for the central transition of the quadrupole nuclei, which is the 

major nonzero term. This truncation is equivalent to a second order 

perturbation treatment when all off diagonal terms in [12] are 

neglected. 

Second the irreducible tensor components R^(9, <})) which yield the 

spatial dependence of the Hamiltonians is determined. A single 

interaction frame transformation that relates the principal axis (PAS) 

frame to the laboratory frame is performed according to the Wigner 

rotation^as follows: 

4 • J. e'"'* '2.' I") 

The Wigner rotation matrices and the definition of the Euler angles 
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have been described.Edmondsdefinition, where the reduced 

rotation matrices d^'^mC#) are related to the Jacobian polynomials^ 

is used. The irreducible spherical components of the shielding 

interaction in its principal axis system are:^^ 

^2+2 

X 
'2±1 

^20 

1 , X X . 
= = 2 ('xx-^^yy)^ 22 

X 

1 c 
xy 

<°xz V' • ° 

43/2 43/2 5^ 

[24] 

The anisotropy 5=o^zz-cro, asymmetry r>=( Oyy-a^x)/<^zz~<^0' isotropic 

value aQ= (Oxx+^yy+'^zz)'^^' are obtained from "yy ^zz' three 

principal values of the interaction tensor. Notice that the 

antisymmetric elements of the interaction tensor are completely 

neglected. This approximation is not necessarily valid for heavy 

nuclei.24,25 Written specifically for the case of m=0, [23] yields 

R^(8,*)= d(^)(0,8,*)p2Q+P22[e^^*d(^)(8)+e-^^y^)(8)] [25] 

Finally, the spatially dependent eigen-energies and the transition 

frequencies according to [18] are determined for the effective 

Hamiltonians determined previously. 

In the presence of more than one interactions, the procedure 

described previously is repeated for individual interactions. However, 

it is necessary to take into account the fixed mutual orientations 

between these tensors as mentioned in [22]. The most direct method in 
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correlating the orientations is by performing an interaction frame 

transformation of the irreducible tensor components for each 

interactions with respect to a reference frame which is conveniently 

chosen to be the PAS of one of the interaction tensors and is 

characterized by Euler angles (cx, g, y)^. The relation of the Euler 

angle (0, 9, <f>) and the orientations are depicted in Fig. 1. 

The spatial components are now generated by using: 

which is written particularly for the case m=0 ; 

In the cases studied, X;=C', Q or D. 

This double frame transformation performed for an electric field 

gradient (e.f.g) tensor, i.e., X=Q, gives a complicated spatial 

dependence of the second order quadrupolar interaction (involving 

evaluation of and R^) and makes it difficult when one proceeds to 

evaluate the critical frequencies (vide infra). To simplify the 

derivation and the calculation we express the transition frequencies of 

the shift interaction ia the principal axes frame of the e.f.g. or the 

dipolar PAS frame, knowing that the mutual orientations, (a, g, y) 

between these two tensors are characteristic of the nuclear electronic 

environment and are independent of crystal orientation. 

The spatially dependent relations of the shift, dipole, and 

quadrupole interactions governed by first order perturbation theory will 
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now be derived. For a first order perturbation, it is found that 

"x" = •'o '28! 

The second term is the isotropic shift term, only appearing in the 

shift interaction since other interaction tensors have zero trace. The 

first order Hamiltonians after a single frame transformation become: 

H^(8, *)= S^P2(cose)+ n\in e-cos2<f.]TQ [29] 

The single quantum spatially dependent transition frequency for the 

individual interaction is then 

0)̂ (9, <j)) = p- (<k|Hg|k> -<k-l lĤ |k-l>} [30] 

For the shift interaction, the single quantum transition frequencies 

are equal for all all |k> -> |k-l> transitions. 

w^(e, 4») = c«^ffp,-a:^S[ P^(cos0) + y sin^e-cos2<t>] [31] 

For the first order quadrupolar interaction, the spatial dependence 

of the transition frequencies is identical to that of the shift 

interaction. 

5^[P2(COS9)+-|- sin^0cos2>t>] [32] 

where 5=0) (2k-l) 
q q 

The constant is defined individually for interactions due to 
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e.f.g. and two body dipolar coupling. 

"q ° 133] 

The factor 2k-l originates from the fundamental quadrature on the 

second rank zero order tensor, of the spin part, with k being the 

final state quantum number of the single quantum transitions. Equation 

[32] implies: (a) the central transition (k=l/2) is not influenced by 

the first order perturbation; and (b) for each of the 21 transitions of. 

spin I nuclei, there corresponds another transition that gives the same 

resonance frequency but with inverse sign. This predicts that under the 

first order perturbation, the quadrupolar or dipolar spectrum should be 

symmetric about the center of mass for either powder or single crystal. 

For the first order dipolar (homonuclear or heteronuclear) 

interaction, the effective Hamiltonians differ only in the interaction 

constants. The spatial dependence of the transition frequency is 

identical to [32]. However due to the axial symmetry of the dipole 

interaction, only the P2(cos0) term remains. 

In the above equations, the sign.of the term cos2<p can be inverted 

depending upon the definition of the Euler angles without affecting the 

results. The positive sign which corresponds to the right hand 

convention in the Wigner rotation will be used. 

Second order corrections are only necessary for the (l/2-> -1/2) 

central transition of half integer quadrupolar nuclei since the averaged 

Hamiltonian, v(0) is zero for the quadrupole interaction. The second 
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Magnus terra, v(l) must be evaluated. The effective Hamiltonian for the 

quadrupolar interaction when neglecting the nonsecular term in [12] can 

be written as: 

"q" • 

We need to calculate both and after a single transformation 

according to [23]. After inserting these expressions with final state 

k=l/2 for the central transition, the spatial dependence of the second 

order quadrupole interaction, are evaluated as follows: 

"^qd = 6^ A(<t.)cos^e + B(<f>)cos^e + C(*)] [34] 

where 

R = w^^[4-I(I+l)-3] 

?7 9 3 2 2 
A(<())= - -g- - ̂  fl cos2<p - ̂  M cos 2<i> 

9 
30 n 3 2 2 

B(<t')= ~ - ~ +2tl cos2<i> + 2— ̂  cos 24) 

2 
C(<|>)= — ^  ̂ cos2# - —n^cos^2<t) [35] 

This result is consistent with that given by Bauger et al.-® and 

with those proposed previously. 

As mentioned previously, the constant spatial relation correlation 

between shielding and e.f.g. or dipole tensors is described by a double 

frame transformation of the shift tensor into the e.f.g. principal axis 

frame. Since only the first order effect is considered, the spatial 

dependence is conveniently obtained by evaluating only the R§(8, *) term. 
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According to [27] we obtain: 

RQ = P20 

+1^ sin^G'sin^g" cos2 X-s in2 0' s in2 P* cos X]} 

2 
+ p22"l|" {sin^9 . [1±S2Ê__Ê c0s2a'C0s2X- cosg-sin2a*sin2X] 

-2cos8'sin8'sing* [cosg- cos2a*cosX-sin2a*sinX] 

2 
+P2(cose)-sin g-cos2a } 

where x=Y+'f'* The single quantum transition frequency is evaluated from 

[28] and [30] for the shift interaction. This gives, 

w^g(e, *) = .^<m|V^°Î0,(t.) |m> -<m-l|v(°)(8,*)|m-l>) 

= CSq+CSĵ COSX +Ss^sinX +Cs2C0s2x+ Ss2sin2x [37] 

with 

CSq= 5-P2(cos0)[ P2(cosg)+j sin^g cos2a] 

Cs^= S*sin20[-|-sin23<- ̂  sing*cosg*cos2a] 

Ss^= S-sin29[- j sing*sin2aj • 

Cs2= S*sin^9[-^in^g- ^^+'^°^"^cos2a) ] 

Ss2= 5*sin^9[- j cosgsin2o] 

This expression resembles to the spatial dependent transition 

frequencies of a shift interaction under variable-angle sample 

spinning,9,19'28 except that the definition of the Euler angles are 
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different. This expression can be written in more concise form when 

combining the cosine and the sine terms of the same X angle; 

w = CgPgCcose)* C^Sin20Cos(X+Y^)+C2Sin eCos2(2X+Y2) [38] 

The new coefficients are 

Co= StP^Ccosg)^- Y sin^gcos2a] 

C^= I" sing{[ (r|cos2a-3)cosg]^+(rtsin2a)^}^''^ [39] 

V I Sin^3+^os2a(l+cos^e)]^+(ncosesin2a)^}^^^ 

The effective angles and Y2 are defined as: 

fp w •_ Yisin2oc 
1 " (rpos2a-3)cosg 

[40] 

Tan Y = 2risin2otcosg 

^ 3sin^^f r|cos2(x(l+cos^g) 

Combining Y2 with X and 2x and denoting these two angles by and 

9.2, expression [38] is further simplified; 

w^s= CQP2(cos0)+C^sin20Cos(9^)+C2sin^0Cos(22) [41] 

with 

2l= Yj+X =Yj + r+<i' 22= Y2+2X =Y2+2(y+<t>) 

Expression [41] has been checked in three ways: (a) when inserting 

zero for the value of Euler angles a, g, y in the spatial orientation 

expression, [41] automatically reduces to [31]; (b) This expression 
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yields the same static powder spectrum after averaging over 0 as 

that calculated from [31] for arbitrary cx, |S, y values; and (c) the 

center of mass obtained from [41] equals that obtained from [31], which 

is aQ. These results are physically meaningful since when the system is 

composed of only the shift interaction, the powder average over the 

random distribution of the sample should be independent of any principal 

axis frame transformation. 

The separation of the 9, (f> term from the constant angle a, g, and y 

facilitates the calculation of the critical frequencies and the 

evaluation of the analytical expression of the singularities and 

shoulders. One should also be careful in assigning the angles and Y2 

during the calculation. These angles depend on the sign of the tangent 

values in [40]. In the case when the denominator of [40] equals zero 

the angle will not necessarily be it/2. When the shift term is axially 

symmetric, i.e., l>0, both angles ^2 must be zero. Finally 

equals to zero implies that Y2 must be zero. 
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FIELD DEPENDENT CRITICAL FREQUENCIES 

The transition frequency governed by the shift interaction plus 

either the first order or the second order quadrupolar interaction is a 

simple sum of the spatially dependent transition frequencies of the two 

individual interactions. We write: 

w + for satellite transitions [42a] 
cs qd 

( 2 )  ( O )  
w = w + w , for central transitions [42b] 

cs qd 

The shift anisotropy in frequency units is linearly dependent 

upon the magnetic field according to first order, and therefore so is 

cc^s' The second order quadrupole transition frequency , on the 

other hand is inversely proportional to the static magnetic field while 

the first order perturbation for quadrupolar or dipolar interactions are 

independent of the magnetic field. Due to the different field 

dependence of the interactions, the spectrum as well as the critical 

frequencies governed by either (*)(^) or will show systematic changes 

with varying magnetic fields. The critical frequencies corresponding to 

critical points in the w(0, <|>) surfaces, and the characters of these 

critical frequencies (shoulder, step, or singularity), locate the 

prominent features of the powder spectrum. It is the purpose of the 

current studies to utilize the field dependent critical frequencies to 

infer the relative tensorial orientations and the individual interaction 

parameters. This approach in obtaining the parameters is shown to be 

more efficient than a complete powder NMR line shape simulation of the 

variable field spectra. 
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The equation applied to evaluate the critical frequencies is derived 

in a manner similar to the algorithm provided by Jellison et al.29 as 

shown in [A-9], or [A-10] in Appendix A. Equations [A-9] instead of [A-

10] is used in the following. Although sin9 = 0 is a natural 

singularity when using [A-9], the boundary condition that cos6= ±1 will 

be required to account for the step of the spectrum if [A-10] is 

employed. [A-9] written in its discrete (9,4>) analogue as 

1(03)= N X desinG Xd<f>|grad{cc^(0, <(i)} 

= N E |grad{w(6^,t^) | [43] 

Where N is the normalization constants which is a function of the 

transition probability and the density of the nucleus present. The 

index i represents the individual crystalline orientations. Subscript 

k, denoting the k-th transition is dropped from [43]. This equation 

states that the contribution to the intensity of the spectrum at aj=co(9j^, 

is the inverse of the amplitude of the gradient at that frequencies. 

Hence the locations of the critical points in the 0^00(8, <»)) surface can 

be determined by evaluating the zeros of the gradient where the 

contribution of intensity to the spectrum from this orientation (Qg, 

is infinity at the frequency w= (*)(%, The corresponding critical 

frequencies in the spectrum are determined by inserting the solution 

(Qq, <t>o) to the spatially dependent resonance frequency [42a], [42b]. 

The character of these critical points are determined by the sign of 

the Wronskian determinant D, where 
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D= [( 3^cù/9e9<j>)^- 0^cV3*^)(3^cVaG^)] [44] 

If D>0 then solution (Qg, (|)Q) will be a saddle point. If D>0 then 

(Q[), <t>o) will be a local extremum in the 00(6, <t>) surfaces. 

In order to calculate the critical frequencies it is necessary to 

solve the two nonlinearly coupled equations corresponding to the two 

components of the gradient of [43]. The solution is obtained by 

applying Brown's method where an iterative algorithm starting from a 

randomly grided (9, «J») pair is used. Numerical techniques are employed 

to avoid missing or overlapping the critical points. Although an 

analytical expression of these critical frequencies facilitates the 

determination of the parameters from the experimental data, this 

expression can only be found for several limited orientations. In the 

next two sections, these expressions will be evaluated. 
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FIRST ORDER QUADRUPOLE VS. SHIFT INTERACTION 

In this section is derived the expression for the critical 

frequencies as a function of interaction parameters for the system 

governed by the first order quadrupole and the shift interactions. The 

result is also applicable to the dipolar (homonuclear or heteronuclear) 

vs. the shift interaction due to the identity of the spatial dependence 

of the dipolar interaction and the first order quadrupolar interaction. 

Some simple cases have previously been studied.^0 For a general 

condition, more accurate field dependent relations will be derived in 

the follows and will later be demonstrated by an example. 

The two first order interactions should be of comparable magnitude 

to exhibit the combined effect of the interactions and the tensorial 

orientation. Hence the case for first order dipole vs. chemical and the 

quadrupole satellite transition vs. Knight shift are two frequently 

encountered cases. We shall consider the general case for the satellite 

transition governed by the first order quadrupolar and relatively large 

shift interactions, and simply replace the coupling constant by A, and 

riq by 0 when the dipole vs shift case is encountered. 

The transition frequency for oriented first order quadrupolar and 

shift interactions associated with the spatial orientations (9, <{>) and 

the mutual orientation (a, 6, Y) is found from [32] and [41] 

cs qd 
2 

= CqP2(cos9)+ C^sin29cos(2^)+C2sin GcosCR^) 

+ &q [PgtcosG)» J ri^sin^0cos2(j)] [45] 
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Note that 5q contains two frequencies with inverse sign. Evaluating 

the location of the critical points in the (o=a)(0, *) surfaces as 

described above, and determining the critical frequencies is achieved by 

finding the zeros of the component of the gradient. The two gradient 

components of [45] are: 

sin28[ 5q(3-YlqCos2(j))+(3CQ-2CgCos(a2) ]+2C^cos2Gcos(3^) [46a] 

^ = sin^0[5 sin2<j>+ 2C„sin(S„)] +C.sin2Gsin(&) [46b] 
a <p q q c c l i 

(1). Obvious solutions for [46b] are cos8=±l (0= 0,n). Because of 

the C]_ term, this condition may not give zero for [46a] if 0; 

however by choosing <)> appropriately, the solution cos0=±l may still 

exist. Hence two conditions that give simultaneous zeros for both 

equations are: 

la: cos0=±l, Ci=0, in this case, 4) is not determined, and is 

immaterial. 

lb: cos0=±l, C^K), in this case, <j) is determined by cos(<t>+Y]^)=0, 

e.g., (j)=Yi^±ii/2. 

It can be readily seen that for both cases the critical frequencies 

will be independent of the angle (j) since only the P2(cos0) terra in the 

first order quadrupole part and the Cg term in the shift part will 

remain after inserting cos6=+l into [45]. This is the fundamental 

critical frequency that will appear as a step in all the spectra. For 

and the fundamental frequencies are identical and are 
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independent of angle <t> as well as Cj. The critical frequency is : 

= &q-(*y&[P2(cosg)+ Y sin^gcosZa] [47] 

If evaluating the critical points by employing [A-10], [47] is 

obtained from the boundary on the w(9, <()) surfaces where u=cos8^+l. 

This frequency is also referred to as the distributing edge since all 

orientations that are perpendicular to the external magnetic field will 

resonate at this frequency. 

(2). If Ci=0, it is observed that cos6=0 will be a solution of 

[46a]. This is then inserted to [46b] to yield the two possible values 

of cos2<j>. The corresponding critical frequencies are: 

2a: cos2<ti=l, ^£=0, 0^=0 

"^2a " I &q(^q-l)- f S[cos^e(l-ncos2a)-2sin^e] [48] 

2b: cos2<t)=-l, Y2=0, C^=0 

^ SqCflq+l)- J 5(l+ncos2a) [49] 

Both solutions exist simultaneously under the condition Ci=0. When 

C^K), one of the above critical frequencies still appears, providing 

that the solutions of cos2t(= +1) also satisfies condition cos(<J>+Y]^)=0. 

This implies should be equal to multiples of it/2. In this case, the 

critical frequency will be described by either 2a or 2b, but not by 

both. 
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There are other solutions to the two coupled equations [46a], [46b] 

under the condition Ci=0. However, they yield identical results to 

those discussed above, as will now be seen. One solution is sin6=0. 

This is identical to the case in lb for varying <j). Another possible 

solution to [46a] is: 

The solutions yield either sin8=0 or sin2<j)=0 , which are found to be 

identical to case lb, or 2a, 2b discussed before. 

For the functions, cos9 and sin9 not equal to the special values, 0 

or +1, the solution is slightly complicated but solvable as shown in the 

following: 

cos2*= ±3(CQ+8q)/(&qy2C2) [50] 

which after insertion into [46b] yields 

9 9 ? 1/9 
sin^e[(S^Y2C2) -9(CQ+Sq)n^' =0 [51] 

Let K= 4C^cos(2^)/[ 6^(3-11qC0s2<())+3CQ-2C2C0s(S22) 1 [52] 

then [46a] can be written as: 

sir.20=Kcos29 [53] 

hence cos29 expressed in terms of K becomes 

cos29^±(l+K ) 
2,-1/2 

[54] 

This relation is when substituted into [46b], gives 

•^=0 =(l-cos29)[5 n sin2({>+C„sin(S.)]+2C„Kcos29 sin(o ) [55] 
o<p q q z z / 1 
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Let Z= cosf+isin*. Multiplying on both sides yields: 

3 
Z (pZ+q) + sZ+r =0 [56] 

with coefficients p, q, r, and s equal to 

p=(l-cos26)( 5 )1_+C,e ) 
1 

[57] 

r=-(l-cos20)(5 )i +C„e 
-iY. 1 

q q 

These equations together with [53] form an iterative set. Problems 

of missing the singularities using Brown's algorithm in solving the two 

coupled nonlinear equations can thus be avoided by solving the two 

iterative relations [53] and [56] for general orientation (a, g, Y) 

where or Y2 will not necessarily be zero-

Based upon the above derivation, explicit relations can be derived 

for some special orientations. Similar to the cases discussed 

previously, the special orientations satisfy sinY2=0, and(or) Y^ being a 

multiple of ru2 (include 0). These conditicriS are satisfied vhsn the 

shift principal Z axis lies in the XZ, YZ, or XY plane of the e.f.g. 

tensor. 

Because the constraint, sinY2=0 is imposed for the special 

orientations, value p equals -r and are both real. Depending on Y]^, two 

cases may occur. 

(a) When p=-r, and q=-s, i.e., Yi= 0,±%, polynomial [56] becomes: 

[p(Z^+l)+q](Z^-l)=0 [58] 

which gives an obvious solution, cos<p=±l. Consequently cos2<|>=cos2Y]^=l. 
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(b) When P=-r, and q=s, e.g., Y]^=+ii/2, [56] becomes: 

[p(Z^-l)+q](Z^+l)=0 [59] 

where another solution, cos<i)=+i is obtained. This corresponds to 

cos2 <|i=cos2 ̂2=-! • 

For these special angles and ^2» critical frequency can 

be expressed as follows: 

^ cos28[3(CQ+5q)+ 4C^Kcos([60] 

-cos2*(2C2COS^2+ ^ &q+CQ+C0s2*(2CgC0sY2+5qnq)] 

with cos29 defined in [54], and 

K= I C^cos(<t^Y^) [61] • 

The denominator Q in [61] is given by 

Q= 6q(3-r!qC0s2i|')4-(3CQ-2C2CosY2C0s26) [62] 

Because the solutions of [58], [59] insure that cos2$=cos2Yi=+l, the 

term cos( «M-Yi )^, will always be equal to unity. This conclusion 

implies: 

(a) combining [54],[61],[62], cos29 becomes 

cos2e = ± —5 5. jr. [63] 
(Q + (4C^)^ V"-

(b) the critical frequency will not be dependent upon the sign of 
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cos(<|m-Y]^) , because when [61] is replaced in the second term of [60] it 

i s  f o u n d  t h a t  t h e  c r i t i c a l  f r e q u e n c i e s  d e p e n d  o n l y  o n  c o s ^ ( .  I n  

other words, the sin20 dependent term; C isin29cos(in [45] is 

completely independent of the sign of cos( . Therefore the sign of 

K which determines the value of cos20 and the quadrant of the 0 angle, 

will be immaterial in determining the critical frequencies. This 

implies that both positive and negative values of cos29 will be the 

solution of the critical points that are independent of the quadrant of 

the 0 angles. 

The angle Y2 is maintained in the equation because COSY2 may take 

two values, ±1. To simplify the notation, we shall denote e = COSY2 

=+1. Hence we have the following (3) and (4) cases. 

(3). From [58] we have cos2*=cos2Y2=l. Inserting the solution for 

cos20 and the related conditions into [60], four singularities can be 

found. 

3a: cos20>O, sinY2=0 

3b: cos20<O, sinY2=0 

The corresponding critical frequencies from [60] are: 

= 4 [0f+(4Ci)2]l/2+ \ [5q(l+nq)+(Co+2C2S)] [64] 

where the positive sign in [64] corresponds to positive values of cos20 

and the constant, Q is given by 

Q = 5 (3-n )+(3CQ-2C2e) [65] 
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(4). From [59] we have cos2ij>=cos2Y]^= -1. Inserting the solution for 

cos20 we have 

4a: cos2e>0, sinY2=0 

4b: cos29<0, sinY2=0 

The corresponding frequencies are: 

[ 6 6 ]  

[67] 

This concludes the evaluation of the critical frequencies for the 

first order quadrupolar and the shift interactions. 

Some features of the solutions are discussed and compared. Cases 

(3) and (4) are mutually exclusive, again because of the equality, cosZt 

= cosZY^ cannot take both positive and negative values. Also 3a and 3b 

exist simultaneously as do 4a and 4b. Notice that when s (=cosY2) 

changes sign, which can be a result of rotating y by :i, the result does 

not equal to interchange of cases (3) and (4). The conclusion that a 

completely different critical frequency and hence different spectra 

occur when y is incremented by n is contradictory to the coincident 

assumption that spectra are independent of orientation a, g, y. If 

Ci=0, all cases in (1) and (2) but neither cases of (3) or (4) 

characterize the critical frequency. However if A one need consider 

only (3) or (4) and the fundamental frequencies (1) and possibly either 

2a or 2b. 

"^4i,4b = 4 [ Q ^ [5q(l-nq)+(Co-2C2e)] 

where the definition of Q is slightly different then [65]: 

Q = &(3+nq)+(30^+20^2) 
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The shift anisotropy (in frequency units), linearly dependent 

upon the magnetic field to first order, is the only term that will be 

affected when the field strength has been changed. The critical 

frequency can be mapped as a function of the magnetic field. This 

mapping allows the extraction of the interaction parameters and the 

mutual orientation of the two interactions. 

Calculations have been performed for several special orientations. 

The calculation uses |&q| = A as the reduced unit for both the x and y 

axis, the asymmetry parameters are 1:^=0., ri^,=0.3. The calculated 

critical frequencies as referenced to are plotted as a function of 

the Larmor frequency (magnetic field) as shown in Fig. 1. One 

interesting feature of these plot is that the mapping is not all linear, 

as might be expected, since the shift is linearly dependent upon the 

field and the quadrupolar interaction is completely independent of the 

field according to first order. The nonlinear behavior as a combined 

effect of shift and the first order quadrupolar interaction, found in 

the curves represented by case (3) and (4) is due to the coefficient , 

and C2 appearing quadratically in [64] and [66]. Also notice that the 

intercepts at zero field, which determine the critical frequencies of 

the first order quadrupolar interaction are dependent upon the asymmetry 

parameter while the patterns are totally dependent upon the choice 

of both tig and and the orientation. 

As a comparison to the calculated critical frequency curves, the 

complete powder line shape at three fields corresponding to 5/A = 0.2, 

0.5 and 1.8 are also shown for each orientation in Fig. 2, Notice the 

two calculations are consistent. 
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SECOND ORDER QUADRUPOLE VS. SHIFT INTERACTION 

In this section are derived expressions for the critical points as a 

function of the field for spectra that are inhomogeneously broadened by 

shift and second order quadrupole interactions. The central transitions 

of half-integer quadrupolar nuclei in the presence of nonnegligible 

shift anisotropy are thus described. The resonance energy as a function 

of the spatial orientation is found from [34] and [41]: 

cs qd 

2 
= CQP2(cos0)+C^sin20cos(2^)+C2Sin 8cos( 

A((|i)cos^efB(<j))cos^©fC{ij>)] [68] 

The location of the critical points in the a>=co(9, <{>) surfaces as 

described above are obtained by the zeros of the components of the 

gradient. From [68] the tvo components of the gradient are: 

• (2) 

"Hfl = ^%7r^(3+n cos2<t>)^cos^0-(5-|n^+ ^os2(|>+n^cos^2*) 
aw 4KU q J J 

4(̂  
+ ^^3Cq-2C2COs(22)]} +2C^cos28cos(a^) [69a] 

( 2 )  
_ p  0  T O O  

sin2$sin 9 [ ïl (9cos 9 +l)-3n cos2$sin 9] 
d<|) 12a:y q q 

2C2sin^9sin(^2) -C^sin29sin(2^) [69b] 

(1). One obvious solution for [69b]=0 is cos9=±l (6= 0,%). If 

0, [69a] may not be zero unless «j» has been chosen such that cosG^^O. 
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Hence the following two conditions yield simultaneous zeros for [69a] 

and [69b]; 

la; cos9=±l, 0^=0, in this case, <!> is undetermined. 

lb: cosÔ=±l, in this case, <t> is determined by cos(#H-Yi)=0, 

e.g., <i)=Yi+n/2. 

For both cases, the critical frequencies are independent of <P-

Since after inserting the condition cos0=±l into [68], only the Cg term 

in the shift part remain and the sum, A(*)+B($)+C(*)= /6 as evaluated 

from [35], is independent of angle <j). Hence the two fundamental 

frequencies and are; 

"^li,lb =3^ - ^ sin^gcosZa] [70] 

These critical frequencies appear as a step in all the spectra. 

These critical frequencies will not appear when evaluating the critical 

points using [A-10], but can be retrieved by applying the boundary 

condition cosS = ±1 to the vo(9, surfaces. This is referred to as the 

distribution edge. All orientations parallel to the magnetic field will 

resonate at this frequency. 

(2). If Cj= 0, cos6=0 is found to yield a solution to [69a]. This 

is inserted to [69b] to obtain the condition on <#, which gives 

1^ = ^j^l>3ri^cos<J>-|-24a:^C2CosT2)sin2<|) +2C2sinl^cos2* [71] 

Cos<t) in this equation can be solved as a polynomial of fourth order 

and hence gives a maximum of four solutions within the range |cos4^<l. 
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These can be obtained numerically using Newton's method. Identical 

critical frequencies may be obtained for different solution of cos# 

after insertion into . 

The critical frequency evaluated at Ci=0, cos6=0 and 4» obtained from 

the condition [71]=0 will be: 

"'2'" 5" VV=<=2' '"1 

Special cases are discussed when the shift principal Z axis lies in 

the meridian or the equators of the e.f.g. principal axis, (i.e., either 

XY, YZ, or XZ plane). Y2 in this condition must equal zero or ±%. 

Hence [72] can be further simplified after inserting sinY2=0. This 

gives the following solutions of angles and critical frequencies which 

are independent of value : 

2a: cos0=0, cos2<|>=l, Y2 =0, + n 

w^2a = i44^^(3-nq)^- ^cos^g(l-ncos2a)-2sin^g] [73] 

2b: cos6=0, cos2$=-l, ^2= 0,±% 

"^2b " " 2 [l+rcosZ*] t/'4] 

A third solution is obtained where the conditions on <j> are solved 

from the zeros of the bracket in [71] instead of from sin2<(>=0. This 

frequency is denoted as curve 2c. 
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2c: cos6=0, ^2=0, + n with 

C0S2«. (Y (^CjC0ST2)/3n^ [75] 

The corresponding frequency for 2c is; 

"^2c = Î8" 3n ̂ 2~ A "t 
q RHq 

[76] 

Although the condition C]^=0 has been assumed in the above results, 

which leads to the solution of cos6=0 from [69a] and alternatively 

yields the solution for cos24s this requirement is not required if the 

condition on <j) also satisfies cos(0. In the case, the above 

solutions and the corresponding critical frequencies will also appear. 

For a general orientation, sinY2 is not zero. In this case, the 

solution can be obtained by solving [69] as mentioned previously. We 

will refer to this solution as frequency 2d. The expression of the 

critical frequency is that of [72]. 

There are other solutions when cos9 or sin9 # 0 or +1 which are 

considered below in the case (3), (4), (5) and (6). Again the 

analytical solutions are available only for the case, sinY2 =0, i.e., 

when the principal Z axis of the shift lies in the meridian or the 

equator of the e.f.g. principal axis. 

If =0, and sinY2=0, [69b] yields a solution for sin2(}>=0, e.g., 

cos2*=±l. This leads to the following two cases: 

(3). Cos24>=l, Ci=0, sinY2=0. Inserting these condition to [69a] 

cos© can be determined as follows. 
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cos^6= -4wy(3CQ-2C2)/R(nq+3)2 +(nq+5)/3(ni+3) [77] 

From [68] the corresponding critical frequency is 

= -R(Mq+l)/9Kb-[3Co+2C2(nq+2)]/3(nq+3) 

- OC^(2CQ-3C2)^/(Y3)^R [78] 

(4). cos2*=-l, Ci=0, sinY2=0. In this case, cos0 is determined 

from [69a] as follows: 

cos^e= -4%y(3Co+2C2)/R(nq-3)2 +(nq-5)/3(n-3) [79] 

The corresponding critical frequency from [68] is 

= R(n -l)/9(^-[3CQ+2C2(n -2)]/3(nq-3) [80] 

- (^(3CQ+2C2)^/(nq-3)^R 

The signs of cos© in [77] and [79] is immaterial since all remaining 

terms in [68] depend only on cos^©. 

Unlike the cases discussed in 2a, 2b, 2c, or 2d, the requirement 

that Ci=0 is essential for these two singularities since if C;^ ^ 

those solutions that satisfy cos(<j>+Y]^)= 0 in [69a] gives nonzero terms 

such as Cisin29 in [69b]. Although cos© or sin© equals 0 or ±1 yield 

zero for value C2sin2©, this case is identical to 2a — 2d and will not 

be considered. 
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For the general case, CJ^TSO and nonsprcial values of 9, the following 

(5), (6) cases appear. The condition sinY2=0 is required as in case (3), 

(4). This orientation corresponds to the principal Z axis of teh shift 

tensor lies on the XY, YZ, or XZ plane of the e.f.g. tensor. The 

accompanying condition sin((t>+Y]^)=0 may frequently occur in this 

orientation. Hence the solution sin2<()=0 inferred from [69b] will also 

exist as cases (3), (4) above. This implies «h ±K,0 and consequently 

should equal ±n or 0. Furthermore, for arbitrary orientations (a, g, 

r), solution cos2<t>= 1 and cos2<|i=-l appear separately. Therefore the 

following two case (5), (6), are exclusive of each other. To obtain the 

critical frequencies we insert the above conditions in [69a]: 

The + sign corresponds to the two solutions when cos2$=±l. This is 

again a polynomial of fourth order where the solutions of cos29 can be 

obtained numerically. The critical frequency can be evaluated after 

inserting solution cos20=E) obtained from [81] to [68]. This yields the 

next two critical frequencies, 

(5). cos2<j>=l, sinY2=0 and cos(4»+Yi)=±l 

Rsin26, 
^(3±riq)^cosV |<nq±3)(Y5) 

|(^(3CqT 2C^) -2cos28C^cos(^Y^) 

8(̂  

[ 81 ]  

[ 9( ( nq+3 )(nq+5)E.+ (nq-3)^] 

+ J OCQ-2C^)1- J (Cq-2C2)+ [ 8 2 ]  
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(6). cos2(|>=-l, 0%A, sinY2=0 and cos(<}M-T3^)=±1 

+ \ (2C^+2C^)l- ̂  (Cg+ZCg)» [83] 

For each of the cases (5) or (6^, there are four independent 

solutions for Ç and hence the critical frequencies. The notation 5a, 

5b, 5c, and 5d or 6a, 6b, 6c, and 6d are used to denote these solutions. 

The sign of term is always positive because positive cos% gives 

negative sin20 and vise verse. 

Calculations have been performed for some orientations. In Fig. 3, 

the critical frequencies vs. the magnetic field as represented by the 

Larmor frequency have been shown. The parameters used in these 

calculation are: = -40 ppm, =1.0, e^qQ= 2.0 MHz, 1^=1.0. Since 

the effect of an e.f.g. is inversely proportional to the magnetic field 

to second order, while the shift interaction is linearly proportional to 

the magnetic field, the critical frequency curves governed by these two 

interactions are found to be nonlinear with the magnetic field. At high 

fields the critical frequencies gradually converge to that observed for 

a nonaxially symmetric shielding spectrum, while in the low field limit 

the second order character gradually dominates. In the limit of zero 

field, the perturbation treatment breaks down. Hence the second order 

perturbation treatment becomes less accurate and may be invalid at the 

low field limit. 
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Similar to the previous case, a complete powder line shape 

calculation using equation [21], has been performed to compare with the 

calculations of the critical frequencies as shown on the right of Fig. 

3. The ratio used in Fig. 3 are defined as follows: 

Ratio= 

5(, is the shift anisotropy in unit of ppm, \)Q is the larmor frequency of 

the quadrupolar nuclei in units of Mhz, and R is defined in [33], [34] 

and [35] in (MHz)^. The values used in the calculation gives R= 3 Mhz^ 

for spin 1=3/2 and the three ratios shown in Fig. 3 corresponds to the 

magnetic field of 50 MHz, 79.0 Mhz and 150 MHz respectively. It can be 

seen from Fig. 3 that the critical frequencies observed in the powder 

line shape are predicted correctly at these three frequencies. 

As a comparison of the effect of mutual orientation upon the powder 

spectra, the critical frequencies for coincident orientation, (a, g, Y)= 

(0.0, 0.0, 0.0) and noncoincident orientation (a, g, Y) = (60.0, 90.0, 

0.0) are shown together in Fig. 4 for three different e.f.g. and 

shielding asymmetry. 
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EXPERIMENTAL 

Here the applicability of the above treatment is demonstrated by 

determining the interaction parameters for a system composed of two 

major interactions with one being the shift interaction. 

The simplest approach in determining the interaction parameters 

would seem to perform an iterative powder line shape fitting for spectra 

taken at a single magnetic field. The iterative calculation should 

include the six interaction parameters and the mutual orientations 

between the two interactions. As a result of the larger number of 

unknowns involved, the iteration converges relatively slowly. Although 

unambiguous results can be attained in principle by iteratively fitting 

the spectra taken at several different magnetic fields with good signal-

to-noise ratios; the calculation involves a large number of iterative 

calculations is in some case, a formidable task and impossible or 

impractical to perform. 

The current approach reduces the scale from fitting of the powder 

line shape to fitting of the field dependent critical frequencies in 

determining the interaction parameters and the mutual orientations. 

This approach is simpler and more accurate than an iterative fitting at 

a single field. 

The system trichloro-acetic acid (TCAA) has been chosen to 

illustrate the applicability of the theory since the internal 

interactions of the protons in this sample are governed by both chemical 

shift and homonuclear dipolar interactions from an isolated dipolar 

pair, and neither interaction dominates the spectrum in the magnetic 

fields measured. Two features of the spectrum are expected: (a) the 
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spectrum can not be approximated by either the shift powder pattern or 

the dipolar Pake doublet; and (b) the resulting spectrum will be 

strongly dependent upon the mutual orientation of the two interactions 

as previously shown. The field dependent critical frequencies of 

mutually oriented shift and first order quadruple interaction tensor 

discussed previously can be readily applied after replacing 5q with A, 

and a zero asymmetry of the dipolar interactions. The dipolar 

coupling constant A is the peak-to-peak splitting of the Pake doublets. 

The sample was dried under He gas and pyrophosphate (P2O5) before 

sealing under vacuum in a Pyrex NMR tube. A simple il/2 pulse was 

applied to obtain the transient signal. The spectra were taken at three 

different fields and are referenced externally to water. These are 

shown in Fig. 5. 

The critical frequencies are located from the derivatives of the 

absorption spectrum which are listed in the first half of Table 1. 

These critical frequencies correspond to the shoulders of the spectrum 

and are harder to locate than those corresponding to steps or 

singularities and therefore are only roughly estimated. 

A fitting of these values is performed by matching the frequencies 

calculated from the zeros of the gradient according to equation [46] for 

the three different fields while iteratively varying the six parameters 

CTQ, 5, n, A, ot, and & until the minimum value of the difference squares 

is reached. The curves correspond to the shoulder are not incorporated 

in the fitting due to the larger errors related to these points. The 

angle y is undetermined (and not important) since one of the 

interactions (dipolar) is axially symmetric. This iterative fitting 
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takes "30 seconds cpu time in the VAX/VMS system. The results are 

listed in the first row in Table III. 

A even faster and less rigorous approach based upon the above 

procedure can be found. This approach involves comparing the calculated 

and experimental patterns of the critical curves. First the critical 

frequencies are referenced to the isotropic shift, eg, before 

correlating with the magnetic field. Second, the approximate 

orientation (ot, g) is found by comparing the characteristic pattern of 

the frequency vs. field curves with that calculated for the seven 

special orientations. Finally, using the analytical expression 

corresponding to the critical curves for that orientations, the other 

three interaction parameters S, A are determined. 

For spectrum governed by the first order perturbation, the center of 

mass of each spectrum corresponds to the isotropic shift value o-g- This 

condition is satisfied in the current system. Hence cq is calculated by 

zeroing the first moment of each spectrum. The critical frequencies are 

further referenced to the center of mass of the spectrum as listed in 

the second half of Table I. In Fig. 6 is shown the correlation of the 

corrected critical frequencies vs. magnetic field. The correlation 

curves for TCAA resemble most those calculated for the orientation o^O, 

P=90 in the low field region (Fig. 1). This orientation is a reasonable 

approximation of the true orientation. The solid and the broken curves 

drawn through the related points are the linear least square fits of the 

points of these curves with the series number denoting the analytical 

critical frequency expression for orientation (a, g)= (0.0, 90.0). The 

analytical expressions of these curves from [47], [48] and [49] are 



www.manaraa.com

49 

rewritten below: 

: ±û+(»^S[P2(cosg)+j sin^gcosZa) [85] 

"+2a ' [l+ncos2a] [86] 

"+2b ' 'f [cos^g(l-ncos2a)-2sin^g] [87] 

the parameter Û can be determined from either the spacing or the 

intercepts of the parallel pairs, which is A for the inner two pairs and 

26 between lb and -lb. Therefore, 5 and can also be found after 

inserting the value a, g and A into the analytical expressions [85], 

[86] or [87] and solving the coupled linear equations. This results are 

listed in the second column of Table III. 

Features of these critical frequencies are noted: (a) although six 

critical curves appear, only three distinctive slopes exist, i.e., 

curves lb, 2a and 2b. The corresponding parallel curves -lb, -2a, -2b 

yield the intercepts of opposite sign, and (b) the intercept at zero 

field represents the critical frequencies in the absence of the shift 

interaction. Therefore, the intercept of 2a, 2b coincide at A/2 and -

2a, -2b at -A/2 while lb and -lb yield intercept at ±A respectively, 

which clearly shows the features of a Pake-doublet. The critical 

ferquencies shown in Fig. 1, further illustrates these relations. 

The above approach limits the mutual orientation to the closest 

special orientation where the analytical expressions of all critical 

curves are available. Although this simplification introduces errors in 

the orientation a, g and the asymmetry parameter ri, the dipolar coupling 
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constant, A and the shift anisotropy 5 determined are quite accurately 

determined. The results are to be compared with those obtained from the 

iterative approach by matching the zeros of the gradient at the three 

fields as shown in the first row of Table III. Note that the second 

approach is not intended to replace the iterative fitting of the 

critical frequencies but simply to serve as a convenient estimation of 

the interaction parameters. The near orthogonal orientation between 

shielding tensor and the internuclear vector, and the interaction 

parameters are consistent with those obtained from a single crystal 

studies by Dybowski et al.31 

A static powder line shape calculated is finally performed using the 

best fitted values from the critical frequencies of mutually oriented 

dipolar and chemical shift tensors. This calculation is performed 

according to [21], where the transient decay signal governed by the 

orientation dependent eigen-energies is first calculated followed by 

Fourier transform of this averaged decay to yield the spectra. The 

calculated results are shown in Fig. 7 which is to be compared with Fig. 

5; the experimental spectra. 



www.manaraa.com

51 

DISCUSSION 

The orientation of individual spin interaction tensors in solids is 

dependent upon the local electronic environment of the nucleus studied. 

For example, the orientation of the shielding tensor depends upon the 

local electron density, the quadrupole interaction depends upon the 

orientation of the electric field gradient tensor and the tensor 

orientation of dipolar interaction is coaxial with the internuclear 

vector. These orientations are in general independent of each other. 

From the analytical expressions given for the special orientations, it 

can be inferred that imposing the assumption that the two interaction 

tensors have the same orientation will lead to large errors in 

determining interaction parameters. The asymmetry, in particular, is 

sensitive to the choice of the orientation angles. As a result, it will 

be hard if not impossible to obtain consistent results when the fitting 

is performed for spectra taken at different magnetic fields. This error 

becomes more severe when the magnitudes of the two interactions are 

comparable. 

On the other hand the effect of the mutual orientation of the 

interaction tensors will be less dramatic if one of the interactions is 

larger compared to the other. Such a situation may occur when 

experiments are performed at extremes of magnetic fields. This 

conclusion can be inferred from the calculation shown in Figs. 1 and 3. 

At low magnetic fields when the magnitude of the shift is much smaller 

than the dipolar or the quadrupolar interactions, the effects of 

different orientations upon the spectra and the critical frequency 

curves are much harder to differentiate. 
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From the above discussion ve concluded that: (a) the method of 

finding the interaction parameters by monitoring the field dependent 

critical frequencies is most useful in the regime where the two 

interactions are of comparable size; and (b) to be able to yield the 

most accurate results when applying this method, particularly in the 

mutual orientation and the asymmetry parameters, data should be obtained 

at a sufficiently large range of magnetic fields. 

In the following is discussed the limitations of the method 

according to the assumptions made in inferring the mutual orientations 

and the analytical expressions. 

(1). The major interactions governing the spectrum are assumed to 

be inhomogeneous. In other words the broadening of the spectrum 

originates from a superposition of inherently sharp lines associated 

with the random distribution of powder sample, or possibly a 

distribution of the interaction parameters (the electron density, the 

electric field gradient) throughout the micro-crystallite. Homogeneous 

effects originating from nonsecular terms in the internal Hamiltonians 

are assumed to be weak compared to the effects of inhomogeneties causing 

only a "smoothing" of the inhomogeneous spectra. In calculating the 

powder spectra as shown in Figs. 2 and 3, the "smoothing" or 

"broadening" effect has been accounted for by multiplying a decay 

function to the calculated transient signal before Fourier 

transformation. 

When homogeneous broadening becomes sufficiently large, the spectrum 

gradually loses its prominent inhomogeneous features and assumes a form 

approaching that of a Gaussian or a Lorentzian line. This approach 
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becomes useless in this condition as is also true for other methods of 

isolating the individual interactions such as multiple pulse techniques 

or MAS of iterative line shape simulations, 

(2). In the presence of sufficiently large shifts, such as Knight 

shifts in a metal or the shift for heavy nuclei, where the anisotropy 

and the shifts may be few percent, the calculation must be carried to 

second or higher order. Therefore care should be taken in applying the 

current method to systems where higher order perturbations may be 

necessary to account for the observed spectra. 

(3). The antisymmetric component in both the shielding and the 

e.f.g. principal axes tensors have been completely neglected in the 

calculations. The presence of these components depend upon the nuclear 

site symmetry24 and are found to contribute to the second order. While 

this may not be important for the shift interaction it may produce extra 

features for the central transition spectra where the second order 

perturbation dominates. Quantitative effects of the antisymmetric 

component of the e.f.g. tensors upon the quadrupolar central transition 

line shape have not previously been reported. 

(4). The calculation is performed in the Zeeman region (as opposed 

to the quadrupole region) where the effect of the electric field 

gradient can be treated as a perturbation on the Zeeman interaction. In 

this limit, it is legitimate to consider only first order perturbations 

for quadrupole satellite transitions or the dipole interaction and 

second order perturbation for the half-half central transition of half-

integer quadrupolar nuclei. As the quadrupolar coupling increases, the 

perturbation approach may yield incorrect results even when higher order 
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contributions are incorporated. A scheme in solving for the eigen-

energies and the spatial dependent expressions is required. Studies of 

this type when the quadrupole interaction is comparable to or much 

larger than the Zeeman interaction have been discussed by Nicol^^ and 

Abragam.23 Unlike the case of the Zeeman limit, the coincident 

orientation assumed for the e.f.g. and shielding tensor in these studies 

is a reasonable one,33 since in the low field limit where the shift is 

much smaller than the quadrupolar interaction, the mutual orientation is 

less influential to the spectrum. 

(5). There are cases when the three major inhomogeneous 

interactions, i.e., quadrupole, dipole, and shift interactions are 

simultaneously present. Analysis of the spectrum may be tedious in some 

cases, but can be carried out in the same manner as demonstrated in the 

previous section as long as the spatially dependent transition 

frequencies are determined. Evaluating the analytical expression for 

those special orientations is more difficult. Nevertheless the 

numerical procedure in determining the field dependent critical 

frequencies according to [46] or [69], and using the spatially dependent 

transition frequencies and equation [21] to calculate the powder line 

shape are still the same. The fundamental frequency la, lb still holds 

in this case. Torgeson at al.^^ have performed this type of analysis 

involving three interactions. The assumption that all three principal 

axis tensors are coincident, make the treatment possible. However, this 

may produce a large error in the derived parameters. 

(6). Finally we shall mention that the spatial dependent expression 

of the transition frequency are only valid for single quantum coherence. 
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The transition probability for the m-th single quantum transition is 

assumed to be independent of the orientation and proportional to 

|<k|ly|k-l>for both the first order and the second order 

perturbation. During the period of the rf irradiation, the evolution 

effect of internal Hamiltonians large compared with the rf field may 

produce higher quantum coherence and an orientational dependent 

transition probability for the micro-crystallite sample. Although the 

powder spectra line shape is distorted by the effect, the position of 

the critical frequencies where an infinity in the intensity occurs is 

less affected. 
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CONCLUSION 

In a nuclear system governed by two interactions where neither 

interaction dominates, the combined effects are an inhomogeneously 

broadened spectrum which depends not only upon the individual 

interaction parameters but also strongly upon the mutual orientations 

between these tensors. The studies shows that: (a) the effects of the 

mutual orientation between interaction tensors are reflected in both the 

static powder line shape and the distinctive features of the field 

dependent critical frequencies as shown in Figs. 1 to 4, and (b) the 

tensorial orientation between interactions and the individual 

interaction parameters can be determined by analyzing the critical 

frequencies (singularities, shoulders, and steps) of a powder spectrum 

vs. the magnetic field strength. 

Field dependent critical frequencies"and the powder spectra are 

calculated for oriented e.f.g. tensor and shielding tensor to both the 

first order and the second order perturbations. Although the method 

developed is valid for both satellite transitions and the central 

transition of spectra of quadrupolar nuclei under the influence of a 

shift interaction, modification can be made easily to incorporate three 

interactions, e.g., quadrupolar, dipole and shift interactions, or to 

involve higher order perturbations. 
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Table I 

The critical frequencies of TCAA spectrum at three fields 

Bq (MHZ) 

C.M.(kHz)a 

56.05 

-0.6+0.2 

100.09 

-1.0+0.2 

220.16 

-2.2+0.2 

A(kHz) 10.5 10.0 8.0 

B 5.4b 5.1 4.8 

C 4.4 3.7 1.7 

D -5.2 -5.3 -5.4 

E -6.4b -7.0 -8.6 

F -11.9 -12.5 -14.1 

Below: corrected frequencies w.r.t to the center of mass 

A(kHz) 11.1 11.0 10.2 

B 6.0b 6.1 7.0 

C 5.0 4.7 3.9 

D -4.6 -4.3 -3.2 

E -5.8b • -6.0 -6.4 

F -11.3 -11.5 -11.9 

^ Center of mass is calculated by zeroing the first moment. 

This value is taken as the isotropic shift. 

^ This critical frequency is only estimated roughly due to the 

broadness of the peaks and the ambiguity of the position of the 

shoulders. 



www.manaraa.com

58 

Table II 

Properties of the six critical frequency curves 

1-

1 
1 

A B C D E F 

1 

1 
Series® ( -lb 2a 2b -2a -2b lb 

Intcps.(KHz)1 11.5 5.6 5.4 -5.3 -5.6 -11.2 

Slope(PPm) 1 -5.2 9.4 -7.7 10.9 -6.6 -4.6 

Character^ | 

1 

1-

Stp Sdr Sng Sng Sdr Stp 

^ The series number of the critical ÎL-equencies vs. Field 

curves for orientation oe=0, g=90.0. 

^ The characters of the critical frequencies, where Stp= 

Step, Sdr= Shoulder, Sng= Singularity. 
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Table III 

Parameters of the tvo interaction tensors in TCAA 

methods | ffO(ppm) 5(ppm) n  û(KHz) a e  

Iterative | -10.5 13.5+1. 0.2±.l 11.1±.2 20.+30 80±1G 

Linear | -10.0 10.5+1. 0.4+.2 11.3+.4 0.0 90.0 

Single X'tal^ l  -10.0 13.7+.5 0.15+.1 11.25 0. 

o
 

C
O

 

^ From Dybovski et al.^ï 
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Figure 1. Field dependent critical frequencies of the dipolar vs the 

shift interaction are calculated from [45] and the zeros of 

the gradient from [46] for eight selected orientations. The 

shift ahisotropy is expressed in the reduced units of the 

dipolar coupling constant. The asymmetry value of the shift 

interaction is chosen to be n=0.3. If the first order 

quadrupolar instead of dipolar interactions presents, 

the calculated pattern will be different. 
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Figure 2. The complete powder line shape at two field strengths for the 

eight orientations calculated in Fig. 1. (a) oc=35.0, p=77.0 

(b) 0=0.0, ftO.O (c) oc=0.0, ^45.0 (d) «=0.0, ^=90.0 (e) 

(*=45.0 ,^90.0 (f) «^60.0 ,^=90.0 (g) ot=90.0 , &=90.0 

(h)a=90.0 ,ft45.0. 
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Figure 3. Field dependent critical frequencies for the second order 

quadrupolar vs the shift interaction are calculated from [68] 

and the zeros of the gradient from [69]. This case Is only 

applicable to the central transition of half integer 

quadrupolar nuclei. The shift anlsotropy and the quadrupole 

constant Vq are expressed in units of KHz. The complete 

powder line shape calculation using 121) at three field 

strengths are shown at the left side of each critical 

frequencies curve as a comparison (see text for detail). The 

seven orientations calculated are: (a) ot=0.0 ,(3=0.0 (b) 

oc^O.O ,^45.0 (c) (*=0.0 ,(5=90.0 (d) 0=45.0 ,0=90.0 (e) a=60.0 

,0=90.0 (f) o=90.0 ,0=90.0 (g) 0=90.0 ,(5=45.0. 



www.manaraa.com

Ratio 

0.5 

10 0 - 1 0  

Frequency (KHz) 

v- VQ ( K H z )  

f\) 
00 œ 

cr> 

03 
CD o o 

to 

% 
N 

CD 



www.manaraa.com

68b 

-16 

-24 
80 100 120 140 160 

( M H z )  
20 40 60 

Figure 3 (continued) 



www.manaraa.com

Ratio 

Frequency (KHz) 

iz-i/Q ( KHz ) 

CD 
l\) 

CO CD 



www.manaraa.com

68d 

a =45 /S =90 15 

8 

0 

8 

- 1 6  

-24 
100 120 140 160 80 20 40 60 

Bo (MHZ) 

m 

o 

Figure 3 (continued) 



www.manaraa.com

68e 

a=60 0=90 

tsj 
X 

o 
A 
I 
a 

- 1 6  

-24 
20 40 60 80 100 120 140 160 

BQ (MHZ) 

<N 

Figure 3 (continued) 



www.manaraa.com

68 f 

a = 90 13=30 

p 

-24 
100 120 140 150 20 40 60 80 

BQ (MHZ)  

m CN 

j I I I L 

Figure 3 (continued) 



www.manaraa.com

M» 
=3 
t-i 
CD 

Ratio <= 

0.2 

0.5 

10 0 

Frequency (KHz) 

v-UQ { KHz ) 

ro 
CD 00 ro 

CD 

00 U) 00 



www.manaraa.com

Figure 4. Comparison of the critical frequencies for (a, g)=(0.0, 0.0), 

and (ex, P)=(60.0, 90.0) case for various asymmetry 

parameters, (a) t>0.5, r^=0.0, (b) 1^=0.0, (c) 1T=0.0, 

y\q=1.0. The rest of interaction parameters are the same as 

used in the previous calculation. 
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Figure 5. The experimental spectra taken at 56, 100, and 220 Mhz 

respectively. The peak at the center of the 56 MHz spectrum 

is due to the small amount of water present in the sample. 

This has been removed by further drying the sample before 

measuring at 100 and 220 MHz. Upfield is to the right. The 

major intensity (and the center of mass) is shifted dovnfield 

as the Larmor frequency increases. 
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Figure 6. The critical frequencies of the above spectra as listed in 

the second half of Table I are correlated with the magnetic 

field. The linear least squares fits are represented by the 

solid or the broken lines connecting those points. The solid 

line corresponds to the singularities or the steps in the 

spectra, while the broken line with larger error represents 

the mapping of the shoulder. The interaction parameters as 

well as the mutual orientation of the two tensors can be 

determined by analyzing these curves. 
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Figure 7. Complete powder line shape calculated for the three magnetic 

fields measured. The calculation uses the result listed in 

the first row of Table III. A Lorentzian broadening function 

with half width of 3.5 KHz has been applied. The powder 

average uses 2. x 2. degree mash in both 0, and The 

results are to be compared with the experimental in Fig. 5. 
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PART II. A STUDY BY SOLID STATE NMR OF IS^Cs AND 

OF A HYDRATED AND DEHYDRATED CESIUM MORDENITE 
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ABSTRACT 

The solid state NMR of and in cesium exchanged mordenite 

has been monitored as a function of dehydration of the zeolite. In the 

fully hydrated mordenite, (1=7/2) exhibits a single line 64 ppm 

upfield of aqueous saturated CsCl. The anhydrous sample exhibits two 

major lines of intensities 3:1 with center of mass at -57 and -190 ppm 

respectively for Cs under magic-angle spinning. The major intensity is 

upfield of the line observed in the hydrated sample. The electric field 

gradient parameters for Cs of the anhydrous sample are e^qQ=3.1 MHz, 

)>0.65 which reduced to e^qQ=210 KHz, and )T=0 for the hydrated sample. 

Assignment for the three sites occupied by Cs in the anhydrous sample 

and the corresponding chemical shifts are: site II, -157 ppm, site IV, 

-186 ppm, and site VI, -24 ppm after correction for the second order 

quadrupolar shift. The static proton spectra decrease in intensity by a 

factor of 35 between the fully hydrated and anhydrous sample. While 

maintaining a roughly constant width of 6.6 KHz, the shape of the proton 

line changes with dehydration, and exhibits an anisotropy in the 

anhydrous sample. 
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INTRODUCTION 

Solid state NMR has been shown to be a useful tool for studying both 

the static chemical environments and the dynamic behavior of nuclei in 

zeolite.1 The nuclei studied in these systems have been predominantly 

29si, ̂ ^Al, and ^^Si and are both spin 1/2 and amenable to 

quantitative and qualitative detection by standard pulse techniques. 

Z^Al is a quadrupolar nucleus with spin 5/2, and thus exhibits residual 

broadening under rapid sample spinning, and a difficulty with 

quantitative detection associated with the magnitude of the quadrupolar 

splitting of the outer transitions relative to the bandwidth of the rf 

pulse. Nevertheless, its relatively small quadrupole moment allows NMR 

to be a useful technique for studying aluminum in, and the dealumination 

of zeolites. Cesium is an important promoter in catalysts used among 

other reactions for the fixation of CO and the production of higher 

alcohols. 133cs is therefore a nucleus that would be useful as a 

monitor of the chemistry of these systems. The nucleus has a natural 

abundance or 100%, a nuclear spin I = 7/2, and a relatively weak 

quadrupole moment of -S.OxlO'^/lO'^^m^. However, its relatively low 

gyromagnetic ratio, and the relatively low mole ratios of Cs to zeolite 

in standard exchanged catalysts raise questions about the applicability 

of NMR of for monitoring processes taking place in zeolitic 

catalysts. The present work was undertaken to determine the utility of 

133cs as a nucleus to monitor local chemistry in zeolites and more 

generally the local structures around this ion in surface sites. 

Specifically the dehydration of Cs doped mordenite has been followed by 

tracking the high resolution solid state NMR of ^^^Cs. The broad line 
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NMR of has been used as ancillary information to verify the model 

used in explaining the changes in Cs doped mordenite with dehydration. 

The crystallographic sites of Cs in mordenite have been 

characterized by Schlenker, Pluth, and Smith.^ The sites for large 

univalent cations are labeled II, IV, and VI, and have relative 

occupancies for Cs of 3.78: 1.86: 1.75. Sites II and IV place Cs near 

the center of an eight-ring of oxygen, and site VI places the Cs off 

center of a six-ring. Although the 8-ring sites II and IV could 

accommodate all the cations, occupation is also found for the one sided 

coordination site VI. This site indication for II, IV and VI are 

equivalent to A,D and E respectively used by Mortier.3 
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EXPERIMENTAL 

NMR experiments on l^^Cs (1=7/2) and hydrogen were performed at 

28.877 MHz and 220 MHz respectively in a home-built pulsed NMR 

spectrometer which has been previously described.^ 

The Cs exchanged mordenite was prepared by repeated contact of 20% 

of Na mordenite with 250 mis of IM CsNOg at 90°C, until essentially 

complete removal of Na was effected. The Na content of the zeolite was 

monitored by atomic absorption analysis for Na after zeolite dissolution 

using HF. X-ray diffraction analysis before and after ion exchange 

confirmed that no loss in crystallinity occurred during sample 

preparation. Samples with varying degrees of hydration were prepared as 

indicated in Table I. 

The frequency of the sample spinning during NMR experiments on l^^Cs 

was varied from 3.6 KHz to 5.2 KHz to distinguish sideband structure 

from the central transitions. NMR measurements on Cs were taken with 

the sample static, and spinning. All spectra of protons were taken 

under static conditions. 

NMR spectra of static and spinning samples were all taken at room 

temperature. Spin temperature inversion of the preparation pulses was 

used to minimize baseline artifacts in the Fourier transformed spectra. 

All data were taken with fixed gain of the receiver-A/D chain. The 

spectra were normalized to constant intensity for graphical 

presentation. The normalization constant was then divided by the ratio 

of the weight of the sample compared to the fully hydrated sample in 

order to obtain relative amplification factors for each spectrum. For 

example, the relative amplification factors of the proton spectra shown* 
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in Fig. 1 (vide infra) indicate that the proton signal intensity in the 

anhydrous sample vas 35 times less than that of the fully hydrated 

sample. 

Longitudinal relaxation times for Cs in all samples were determined 

to be approximately 10 msec, so that a re-cycle rate of 0.1 seconds was 

used for accumulating NMR of Cs. Total scans of 65,536 were accumulated 

for signal averaging on all samples. 

The longitudinal relaxation of hydrogen in the samples varies with 

the degree of hydration, the fully hydrated sample having a Tj^ of less 

than 0.05 sec, and the anhydrous sample having a T^ of less than 1 

second. The trend of decreasing of T^ at room temperature as degree of 

hydration increases is consistent with other measurements reported for 

univalent cation exchanged zeolite A.^ Re-cycle rates of greater than 

five T^ were used in accumulation of proton NMR. 10,000 scans were 

taken in each set of accumulations in the proton measurements. 

All values of chemical shifts of ^^^Cs are referenced to a saturated 

aqueous solution of CsCl. The chemical shift of is referenced to 

water. The shift scales are expressed with increasing negative values 

being upfield. 
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RESULTS 

The spectra with increasing degree of hydration are shown in Fig. 

1. The NMR spectra of l^^Cs with increasing hydration are shown in 

Figs. 2 and 3 for samples under static and magic-angle sample spinning 

(MAS) conditions respectively. 

The relative intensities of the spectra give an approximate ratio 

of the water content in the dehydrated to that in the fully hydrated 

samples. The proton line width decreases with dehydration and gives 

indication of inhomogeneous dipolar broadening as in sample B. Upon 

further dehydration, the line width gradually increases and develops an 

asymmetry at full dehydration. This trend in the change of the 

spectra with dehydration is consistent with that observed for different 

degrees of hydration for the cation exchanged zeolite A.^ 

The quadrupole coupling constant e^qQ can be measured from the 

singularities of the first satellite transitions (3/2,1/2) and (-1/2,-

3/2) by the following equation:^'® 

^q^ 41(21-1) 

where Bg equals the splitting of the singularity of the first satellite 

m=3/2, or m = -1/2 from the center of mass. These singularities 

correspond to the orientation with the principal axis of the e.f.g. 

tensor being perpendicular to the external magnetic field.^ Equation 

[1] implies that splitting Bq depends also on the asymmetry parameter f) 

of the electric field gradient (e.f.g.) tensor. For each of the m=3/2 

and m=-l/2 transitions there will be two critical frequencies if 
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These will coincide when r>=0. The term (1 + Yi) corresponds to a 

shoulder of the satellite, which is not visible in the powder spectrum. 

The term (1 - corresponds to an infinity in the unbroadened powder 

spectrum; it is this singularity which is measured in the experimental 

spectrum which we listed in the first row in Table II. The negative 

sign is therefore chosen when utilizing the first satellite transition, 

and a nonzero of to calculate e^qQ. 

Both the static and MAS spectra show a consistent trend of increase 

in quadrupole coupling constant with extent of dehydration. This is to 

be expected, as the electric field gradient would be expected to become 

more intense as the spherically symmetrical first coordination sphere of 

waters is removed. As the dehydration proceeds and the coupling 

constant becomes larger, the satellite transitions become more removed 

from the central transition, and less intense. Thus, the accuracy of 

determining the coupling constant from the position of the satellite 

transition decreases with increasing extent of dehydration. 

Since calculating quadrupole coupling constant, e^qQ, from the first 

satellite singularity depends also upon the asymmetry parameter, n, a 

value be determined from the satellite splitting alone. In general, a 

line shape fitting is required to determine both e^qQ and value. In 

principal, this can be performed for either the satellite or the central 

transition under MAS. 

For the highly hydrated samples, i.e., those with well defined 

satellite splittings, the central transition is narrower than the 

dipolar broadening and furthermore the transitions from Cs in sites II, 

IV, and VI are too closely superimposed. To perform a line shape 
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fitting to a superposition of central transition powder patterns under 

MAS is not practical in this case. Recalling the fact that was found 

to decrease with increased water content due to the spherically 

symmetrical first coordination sphere of water, the values of e^qQ for 

samples A, B,and C were determined from the first satellite transition 

alone, assuming a value of zero for f). 

As the dehydration proceeds, the splitting from these three sites 

separate, and it is possible to perform a meaningful fit of the central 

transition MAS spectra to a superposition of theoretical powder 

patterns. The fitting of the central transition in samples D,E, and F 

(discussed further in the Discussion section) yielded values of both 

e^qQ and r|. As a comparison, the n value was again used to determine 

e^qQ using the observed first satellite transitions from [1] for these 

samples as well. The larger deviation observed for sample F is due to 

the larger uncertainty present in estimating the first satellite 

splitting as mentioned previously. 

The values of the quadrupole coupling constant, e^qQ, determined 

both from fit of the central transition and from the splitting of the 

first satellite, are listed in Table-II. Also listed are the 

experimentally observed values of the first satellite splitting, Bq, and 

of n inferred from the fit to the central transition of samples D,E, and 

F. 

The second satellite transition (5/2,3/2) and (-3/2,-5/2) cannot be 

observed for Cs in the anhydrous sample, and is just observable in the 

fully hydrated sample where the quadrupolar coupling is the weakest. 
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The central transition line width (600Hz) for the fully hydrated 

sample A in the MAS spectrum turns out to be three to four times larger 

than that calculated by using the quadrupole coupling constant estimated 

from the position of the satellites. This residual experimental 

broadening for sample A may be accounted for in three ways: (a) The 

homogeneous broadening of the Cs nucleus due to heteronuclear dipolar 

coupling to 27^1, (b) an inhomogeneous distribution of the e.f.g. or the 

isotropic chemical shift throughout the sample,^ (c) a nonzero value of 

the asymmetry parameter Yi, yielding a magnitude of e^qQ larger then 210 

KHz. 

The center of mass of a quadrupolar nuclei obtained by zeroing the 

first moment is a combined effect of the shift interaction and the 

second order quadrupolar interaction.10,11 Hence the true isotropic 

chemical shift, does not coincide with the center of gravity of the 

spectrum. A correction for the second order quadrupolar shift, aqg, 

should be made once the quadrupole coupling constant e^qQ is determined 

by the relation:^ 

J =<T + ff 
cm cs qs 

qs 
0 

I(I+l)-9m(m-l)-3 
2 2 
I (21-1) 

(U f-) 

0 
40 

[ 2 ]  

Where is the center of mass of the central transition. The 

multiplification factors f of the quadrupolar shifts are summarized in 

Table III for different transitions of half integer spin up to 1=9/2. 
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The centers of mass of each peak in the MAS spectra are 

obtained through zeroing the first moment of the center band of the 

half-half central transition. These values with different degrees of 

hydration are listed in the first two rows in Table IV. The second 

order quadrupolar shift Cgg for the central transition of ^^^Cs (1=7/2) 

is calculated from [2] using %;q=28.87 Mhz and the best measured value of 

e^qQ (Table II). The values of are then obtained from Ccs=*cm-Oqs' 

These values characterizing the NMR spectra of ^^^Cs in the samples of 

the present work are listed in Table IV. All shift values are tabulated 

with increasing negative values being upfield. 
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DISCUSSION 

In the fully hydrated Cs mordenite the Cs"*" ions can be considered as 

floating in the zeolite water, the coordination sphere of Cs+ thus being 

occupied by water molecules. This has the effect of placing all the Cs"*" 

ions in the same symmetrical nearest neighbor environment and thus of 

all Cs"*" ions having the same isotropic chemical shifts. Dehydration 

results in the loss of the hydration water and the subsequent migration 

of Cs+ ions to sites II, IV, and VI of the zeolite lattice where 

coordination is now provided by the framework oxygen. Because of the 

differences in geometry, coordination number, and because of the 

replacement of water oxygens by lattice oxygens, different chemical 

shifts are expected for l^^Cs in the different cation positions. In the 

present study, a detailed analysis of the l^^Cs NMR spectra for the 

anhydrous sample is greatly facilitated by the X-ray diffraction work of 

Schlenker, Pluth and Smith^ who have described in detail the geometry 

of the Cs"*" ions located at the eight-ring sites II, IV, and the six-ring 

site VI with the site occupancy in fully exchanged Cs mordenite. This 

picture fits with the observed single sharp peak in the fully hydrated 

sample while the anhydrous sample exhibits individual chemical shifts at 

different sites. 

As the degree of hydration increases the quadrupole constant e^Qq 

gradually decreases from 3.1 MHz to 210 KHz for the fully hydrated 

sample. This trend is seen in Fig. 2, where the first satellites for 

samples A, B can be observed, and the satellite splitting gradually 

increases with dehydration. The spectrum under MAS further confirms 

that the residual broadening is mainly due to the second order 
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quadrupolar interactions. The broadening changes the observed chemical 

shift from 1.2 KHz for the anhydrous sample to 600 Hz for the fully 

hydrated sample. 

In the fully anhydrous sample, there appear two main peaks from the 

Cs spectrum under MAS. The peaks have ratio of 3:1, indicating that 

there are at least two different Cs populations in the structure. The 

higher field peak (-157 ppm) under MAS appearing in the anhydrous 

compound has been fitted by a superposition of two central transitions 

with an intensity ratio of 2:1. The fit is shown in under the upfield 

peak in Fig. 4. The parameters obtained in this fit are: the asymmetry 

parameter, = 0.6; the quadrupole coupling constant, e^qQ = 3.1 MHz; 

and the isotropic values of the two shifts in the upfield peak, = 

-157, and -186 ppm.^^ The choice of single quadrupole coupling constant 

and asymmetry parameters for Cs at the two sites is based upon the fact 

that the two Cs species resides in similar environment. This choice 

reduced the parameters and greatly simplifies the calculation. 

The downfield peak was fitted to a single central transition powder 

pattern under MAS. The parameters are: ïi = 0.7, e^qQ = 3.2 MHz, and 

= -32 ppm. The asymmetry parameter of the e.f.g. tensor is only a 

rough estimate. This cannot be determined unambiguously through line 

shape analysis of the MAS spectra due to the signal-to-noise ratio 

limitations and the possible inhomogeneous distribution of these 

parameters.Although the quadrupole coupling constant is expected 

to be much different from the -157 ppm species, this is not observed, 

however. This results may also explains that only one first satellite 

singularity is found for sample F. 
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To exclude the possibility that the upfield peak of the fully 

anhydrous sample might include the overlap of the rotational side bands 

from the low field peak (-24ppm), the spectrum was recorded for several 

different rotational frequencies. Invariance of the line shape with the 

varying rotation speed supported the idea that the upfield peak is a 

inhomogeneous superposition of two peaks but not overlapping of 

rotational side bands. 

Considering the information from x-ray data that a Cs ion at site VI 

is coordinated only on one side of the six ring, while Cs in sites II 

and IV are only slightly off center of an eight-ring, assignments for 

the three Cs nuclei are made as shown in Table V. 

The proton spectra and the T^ relaxation time for samples A-F also 

show interesting changes which are consistent with the above proposed 

mechanism of hydration. The trend of decreasing line width with 

decreasing water contents can be attributed to the chemical exchange 

motion of hydroxyl and water protons. As the water content decreases 

the hydroxyl group and water molecules tend to be less mobile and T^ 

increases.13,14 The further broadening of the spectra for the 

anhydrous sample can be due to shielding anisotropy plus an 

inhomogeneous distribution of the chemical shifts. 



www.manaraa.com

92 

CONCLUSION 

133cs is shown to be a useful nucleus for monitoring the local 

environments in mordenite by NMR. The NMR spectrum of l^^Cs in cesium 

exchanged mordenite indicates that the e.f.g. tensor increases with 

decreasing water content. The quadrupole coupling constant increases 

from 210 KHz for the fully hydrated sample to 3.1 MHz for the anhydrous 

sample. The static spectra increase in line width from 1.2 KHz for the 

fully hydrated sample to 6 kHz for the anhydrous sample. Under MAS, the 

anhydrous sample shows two peaks, with relative intensities of roughly 

1:3. Two different sites are clearly observed in the anhydrous sample 

with center of mass of the peaks at -191.0 ppm and -57 ppm. The 

assignment of the peaks to Cs locations is made on the basis of the 

structural difference of the six-ring coordination site VI from the 

eight-ring sites II, and IV. After correcting for the second order 

quadrupolar shift the down field peak, -24ppm; may be attributed to site 

VI while sites II and IV with similar structures yield similar chemical 

shifts at -157 ppm and -186 ppm (see Table V). In the fully hydrated 

sample all three sites possess an identical isotropic value of -64 ppm. 
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Table I 

Conditions of sample preparation 

Sample Calcination Temperature, °C/Time 

A Fully hydrated 

B 100/8 hours 

C 320/2 hours (deep bed in NMR tube) 

D 320/4 hours " 

E 450/4 hours " 

F 450/10 hours (shallow bed in 10 mm bulbs) 
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Table II 

The quadrupole coupling constant and the asymmetry 

Sample FED C B A 

Bq(KHz)a 58. 46. 39. 32. 12.8 7.5 

e2qQ(MHz)b 4.6 2.6 1.8 0.9 0.36 0.21 

e2qQ(MHz)C 3.1 2.1 1.7 

rf 0.65 0.5 0.4 0.0 0.0 0.0 

The first satellite splitting from the center of mass of the 

static sample. 

^ Calculated from [1] and Bq assuming Yi value obtained from 

lineshape simulation for samples D, E, F and 0.0 for samples A, 

B, C. 

^ Obtained from the line shape simulation of the MAS center band 

of the central transition. 
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Table III 

Multiplication factor, f, of Quadrupolar shift in eq. [2]^ 

m 1/2 3/2 5/2 7/2 9/2 

I 

3/2 1/3 -2/3 

5/2 8/100 -1/100 -28/100 

7/2 15/21% 6/21% -21/21% -66/21% 

9/2 24/94% 15/94% -12/94% -57/94% -120/94% 

^ (m,m-l) and (-m+l,-m) yield identical Cqg. 
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Table IV 

NMR parameters of of Cs exchanged Mordenite 

Sample F E D C B A 

*cm(PPm)a -57 -61. -63. -65. -65. -64 

-190.0 -195.0 -198. X X X 

Oqs(PPm)b -33. -15. -10. -2.5 0. 0 

Ocs(PPm)C -24. -46. -53. -62.5 -65. -64. 

-157. -179. -188. X X X 

^ The center of mass of the central transition. 

^ The second order quadrupole shift calculated from [2]. 

^ The isotropic chemical shift value. 
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Table V 

Assignment of ^^^Cs shift value of Cs exchanged Mordenite 

sitea II IV VI 

(Tes (PPm) -157.0 -186.0 -24.0 

area (NMR) 2 1 1 

population(X-ray) 3.78 1.86 1.75 

a Site indications are the same as those in reference 2. 
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Figure 1. NMR spectra of in Cs exchanged mordenite as a function of 

degree of hydration. Bottom, spectrum A, is the fully 

hydrated sample. Top, spectrum F is the anhydrous sample. 



www.manaraa.com

ICI 

R IfKS/CCO.lB KBZ 
STATIC POTSIX 

Z3B 

Z30 

Zl5 

zB 

zl 

-40 

SHIFT (PPM) 



www.manaraa.com

Figure 2. Static NMR spectrum of in Cs exchanged mordenite, as a 

function of degree of hydration. Bottom, spectrum A, fully 

hydrated sample. Top, spectrum F, anhydrous sample. Note 

the satellite transitions visible in spectra A and B. 



www.manaraa.com

103 

es NMR/28.B7 J IH2 

STATIC POTTDH* 

200 

Shi f t  (ppm) 



www.manaraa.com

Figure 3. MAS spectra of in Cs exchanged mordenite as a function 

of degree of hydration. Bottom, spectrum A, fully hydrated 

sample. Top, spectrum F, anhydrous sample. Sample rotation 

speed in KHz is indicated at the right of each spectrum. 

Starred (*) peaks are spinning sidebands. 
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Figure 4. Fit of the MAS peaks of in anhydrous Cs exchanged 

mordenite to a superposition of three peaks. See discussion 

for the fitting parameters. 
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PART III: EXCHANGE DYNAMICS OF AND THE STRUCTURAL 

INCOMMENSURATION IN NaMoAQ^: NMR DYNAMIC LINE SHAPE 

FOR SECOND ORDER QUADRUPOLAR CENTRAL TRANSITION 
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ABSTRACT 

Sodium nuclei in NaMo^Og show dynamic motion as evidenced by the 

change of the asymmetry parameter of the 2%a central transition in the 

variable temperature NMR. The nonaxially symmetric electric field 

gradient observed in the slow motion limit implies that the preferred 

occupation of the sodium nucleus is not at the center of the tetragonal 

oxygen cage. This fact explains the unrealistic thermal ellipsoid for 

sodium observed in the room temperature X-ray diffraction. Dynamic NMR 

line shape simulations for the second order central transition were 

performed based upon models of four site exchange, and all site random 

exchange models. Both models yield indistinguishable results with an 

activation energy of 1.95 Kcal/mole. 

The anomalous upfield shoulder in the central transition is found to 

be related to an unusual structural incommensuration. The transition 

temperature at T^ = 140 K. is evidenced by jump-discontinuities in both 

the temperature dependence of T^ and the quadrupole coupling constant, 

e^qQ. Using the "plane-wave" approximation to describe the structural 

incommensuration, the appearance and the gradual downfield shift of the 

anomalous shoulder can be satisfactorily fit to the data. From the 

temperature dependence of the quasi-continuous frequency distribution 

associated with the incommensurate structure, the anti-ferroelectric to 

para-electric transition temperature, Tj is estimated to be 520 K. 
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INTRODUCTION 

NMR studies of quadrupolar nuclei have been of recent interest. 

Most of these studies concentrated upon half integer quadrupolar nuclei 

in the Zeeman region (nuclei with relatively weak quadrupole coupling 

constants), where the central transition, dominated by the second order 

perturbation of the electric field gradient upon the Zeeman levels, 

produces a characteristic line width in the range of few 

Valuable information such as the isotropic shift, the electric field 

gradient (e.f.g.), and the asymmetry of the e.f.g. tensor can be 

obtained from studying the line shape. Combined with the magic-angle 

and variable-angle sample spinning techniques,9-13 the studies can be 

extended to more complicated systems where quadrupolar nuclei possess 

different e.f.g. principal values. These studies and calculations are 

however limited only to rigid structures. 

In this article is studied for the first time the second order 

quadrupolar powder line shape under the influence of multisite dynamic 

motion. Of particular interest in the current studies is the effect of 

coherent, discrete site jump motion upon the central transition line 

shape to second order in perturbation theory. The fundamental formalism 

in calculating the dynamic NMR line shape associated with the second 

order quadrupolar interaction and the spatial dependence of the 

characteristic frequencies required in the dynamic motion are also 

discussed. From these line shape studies, the following can be 

revealed: (a) the type of motion; (b) the activation energy of the 

dynamic process; and (c) the equilibrium location of sodium in NaMo^O^. 
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The sample used in the current study is the ternary molybdenum oxide 

NAMo^O^.l^flS This compound consists of infinite chains derived from 

octahedral metal cluster units jointed at opposite edges. A three 

dimensional view of the NaMo^Og structure along the C axis is given in 

Fig. 1, where oxygen atoms bridge the outwardly exposed edge of the 

octahedral molybdenum metal units and bind one chain to another through 

Mo-O-Mo bridges. From this figure, it is seen that the sodium ions are 

stacked along the c axis in tunnels created by four metal-oxide cluster 

chains cross-linked by metal-oxygen bonds. Each Na"*" ion occupies a site 

of tetragonal coordination symmetry surrounded by eight oxygen atoms at 

a distance 2.74 Â. At room temperature the resistivity of the single 

crystal along the needle axis is ca 10~^ ohm*cm, indicating that the 

system is a moderately good one dimensional electrical conductor. 

The principal values of the thermal ellipsoid^^ for sodium are 

B11=B22=9.0, B33=2.9, where 11 and 22 axis are coincident with the a-b 

plane and the 33 axis is along the c crystal axis. On the other hand 

ll^In in InMoAOe, isostructural with NaMo^O^, exhibits a thermal 

ellipsoid with principal values of: B11=B22=1.1, B33=3.1. Both nuclei 

possess comparable 33 principal values, but sodium exhibits an 

unrealistically large anisotropy in the 11 — 22 plane- The origins of 

this large thermal anisotropy, with prolate shape distribution in the 

a-b plane of the unit lattice are possibly related to the following 

behavior: (a) a large amplitude of sodium motion in the a-b plane. The 

thermodynamic stable occupation of the sodium nucleus may either be in 

the center, or off-center of the tetragonal oxygen; and (b) a structural 

incommensuration or some periodic lattice distortion of this quasi-one 
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dimensional channel compound. 

The presence of a long range displacement or a superlattice 

structure is usually reflected by the appearance of satellites in X-ray 

diffraction studies of the solids. Since an X-ray diffraction pattern 

is an ensemble average of the lattice over time long compared to lattice 

motion, a local displacement and a long range incommensuration of 

superlattice structure are hard to distinguish, if the anisotropic 

motion of the sodium nucleus has not been completely frozen. NMR 

spectroscopy, on the other hand, is sensitive to both the local dynamic 

behavior, and at the same time the line shape is subject to the quasi-

continuous distribution of the interaction constant due to long range 

structural incommensuration. NMR offers the promise of discerning local 

structure and long range displacements. In the latter part of the 

study, a possible structural incommensuration in this channel compound 

is examined. A simple calculation is performed for the powder spectrum 

based upon the plane wave approximation of the incommensurate structure 

and the resulting quasi-continuous e.f.g. distribution to account for 

the observed NMR spectra. 



www.manaraa.com

114 

THEORY 

NMR spectra line shapes subject to nuclear motion have been widely 

studied for systems governed by interactions described by first order 

perturbation theory. Examples include shift anisotropy, inhomogeneous 

dipolar broadening, and the effect of an electric field gradient upon 

the 1=1 quadrupolar nucleus, deuterium in particular. Since second 

order terms also contain nonsecular components, describing the time 

dependence in stochastic processes becomes more complicated. The 

applicability of the formalism used for the first order interaction in 

the dynamic studies for systems governed by second order quadrupolar 

perturbation will be examined. Another major concern will be in the 

determination of the spatially dependent transition frequencies of each 

well defined "site" associated with a second order perturbation in the 

dynamic system. 

In this work is considered a half integer quadrupole spin 

experiencing dynamic exchange motion. In the following, the matrix 

formalism describing the discrete multisite dynamic motion governed by 

both the second order quadrupolar interaction and the shift anisotropy 

are discussed. 

The operator Ilg is introduced as the generator of the Markov 

process, which describes the rate of the mass transfer within the n-site 

dynamic ensemble. The orientation, 2 representing the different sites 

available in the discrete site exchange can be defined by the Euler 

angles as will be explained later. The n by n matrix has elements 

l/T^j. The Stochastic Liouville-Von Newman (SLE) equation written in 
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term of superoperator notation becomes 

p(S;) = (-iHg(s,t)+ng)|p(s^)) [1] 

The first term is the ordinary Liouville-Von Newman equation for the 

stationary system. This equation implies that the evolution of the 

density matrix is governed by an energy conserved oscillation term 

represented by the effective Hamiltonian, îTg, and an energy dissipation 

(damping) term originating from nuclear motion. 

The effective Hamiltonian for each distinctive site, E(3^), is 

obtained by average Hamiltonian theory over the fundamental cycle time 

of one Larmor period 2n/WQ. In the current studies, only the averaged 

term for the shift anisotropy, C, and the quadrupolar coupling, Q, is 

considered. To first order, the Magnus expansion^^of the effective 

Hamiltonian for site i becomes: 

H*(S.)= v(0)(9,)+v(0)(Q.)+ [2] 

From the SLE equation, the master equation for discrete n-site 

dynamics can be derived assuming a Markov dynamic process and the slow 

motion limit.The spin magnetization in this limit can be shown to 

follow the nuclear motion adiabatically. The magnetization, following 

the derivation of Abragam, is therefore equal to:^^ 

^^(t)= (iw^n-R)-îî(t) [3] 

This expression under the Markov approximation is independent of the 
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order of pertubation in [2]. 

The transient signal G(t) under dynamic motion can therefore be 

calculated from [3] after summing the magnetization over all distinctive 

sites. 

Here Î is an unit row vector multiplied with #(t) to obtain the sum. 

The row vector, ̂  corresponds to the population weight function. The 

dynamic matrix, n characterizing the type of motion, gives the off 

diagonal elements in the argument of the complex exponential that will 

finally produce the dynamic "averaging" of the static NMR spectra. The 

elements in the diagonal matrices w and R correspond to the 

characteristic frequencies, oo(3^); and the spin spin relaxation time, 

T2i respectively, for each distinctive site, i. All matrices and 

vectors in [4] are dimensioned by the total number of sites, n. 

In the following are determined, the spatial dependence of the 

characteristic transition frequencies for each site. 

The Magnus expansion in [2] is written specifically for the shift 

and the quadrupole interactions. This average Hamiltonian becomes: 

G(t)=î-tl(t) = f exp [(i(w+n-R)t]'^ [4] 

Rg lo + Y Wq Ro [5] 

with and 
3eQ 

V 41(21-1)5" 

The next term in the Magnus expansion is obtained after evaluating 
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the commutators and the double time integral. For the quadrupolar 

interaction this becomes: 

= -^2-{|R2i2(4I2.3I2.1)I^- |R2 |2(2I2.2I2_I)I^ 

+ :!f _ EJ (6Io+4Ig+I)I_] 

+ 46 E^[R^(Ig+l)I^ . E^jdg-DlJl ) [6] 

The above results are obtained by assuming an oscillation of the 

spatial dependent terms, slow compared with the Larmor frequency. 

Evaluated in the Zeeman frame, the resonance frequency of any single 

quantum transition associated with the i-th site can be calculated 

straightforwardly from the effective Hamiltonians: 

w (a.)= ̂  {<mlH^(5.) lm> -<m-l |H^( S2. ) |m-l>} [7] 

the explicit expression can be obtained when the spatial dependence of 

the irreducible components R^, and eigenvalue of the spin operators are 

determined. The resulting characteristic frequencies for the first two 

orders according to [5] and [6] becomes: 

w 
m 

4>) = 4 [wyR^^CSA) w RQ(QDP)(2m-l)] [8] 

2 
w(l)(a ,g ,Y ,e,*) = [2M iR^(QDP) 1^ -M iR^(QDP) [9] 
m i l l  9 U L  

with H^= 4I(I+l)-24m(m-l)-9 

and 1^2= 4I(I+l)-12m(m-l)-6 
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To simplify the calculation, the off diagonal elements in [6] have 

been completely neglected in deriving [9]. This assumption allows us to 

use the Zeeman states as basis functions in evaluating the spin eigen­

values, and dramatically reduces the complexity of the line shape 

calculation. The validity of this truncation will be discussed later. 

In [8] and [9], the spatially dependent terms, have not been 

determined. To obtain this quantity, two transformations in the dynamic 

system need be performed (see Fig. 2). First, a rigid, time independent 

cartesian frame, (Xj^,Yj^,Zj^) in the molecule or lattice frame has been 

conveniently chosen. The transformation from the principal axes (PAS) 

(x', y', z') of the interaction tensor at site i to the reference frame 

R is characterized by the Euler angles (oj^, y^). For an axially 

symmetric tensor, either (a, g, 0) or (0, 3, y) are sufficient to 

characterize the orientation of the interaction. For in-plane motion, 

the simplest choice of the reference frame is the one that containing 

the jumping axis, Z^, in which the nuclei jump in the XR-Y^ plane of 

this frame. 

The second transformation is identical to that performed for a 

static sample and accounts for the relative orientation of the R frame 

in the crystal with respect to the Zeeman quantization axis system. Due 

to the axial symmetry of the laboratory frame (there are no difference 

in the X and Y direction of a well shimmed magnetic field), two Euler 

angles (0, «j») are sufficient to characterize the transformation. 

The irreducible components at each nuclear site, i after the double 

frame transformation are expressed through the Uigner rotation 

matrices^® as follows: 
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E2«.,6i,ri,6, «. I, D<?;,(0,e,«|„ (101 

X represents either the shift or the quadrupolar interaction in the 

current study. The definition of the rotation of the Euler angles are 

identical to that given by Edmonds^l where the reduced rotation matrices 

dm',m(G) are related to Jacobian polynomials. The related irreducible 

spherical components P2m in the principal axis system are known to be: 

*2+2 - 2 ̂  ̂  *20 " tz ^ 

where the anisotropy 5=CT2z~°^0' asymmetry )!=(»yy-Cxx)/'^zz"°^0' the 

isotropic value OQ= ( "xx+'^y+'^zz)'^^ are defined and Oyy, are 

the three principal values of the interaction tensor. For the e.f.g 

tensor, the elements = eq^^, and therefore the trace ctq is zero. 

The convention Iqzzl^lSyyl^lSxxl as defined by Haeberlen^O is used in 

the follwing treatment. Antisymmetric elements that yield off diagonal 

terms in the Hamiltonians are neglected. In the appendix, the explicit 

expressions of the irreducible tensor components, after a double 

frame transformation, which will be used in the line shape calculation, 

are tabulated. 

In the presence of two or more interactions, the principal axes are 

in general oriented independently of each other. This fact might imply 

that a triple frame transformation is required in order to describe the 

mutual orientation between interactions and the molecular frame. This 

can be avoided by utilizing the common rigid reference frame, R, defined 
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previously. To simplify the discussion, consider the two interactions 

being A and B, with relative orientations as shown in Fig. 2. For the 

first interaction, the transformation characterized by the Euler angle 

(oj, Pi, Yi)A> orients A into the reference coordinate, R. A second 

transformation to the laboratory frame is characterized by angles (0, 0, 

<|>). The second interaction, B, will orient at different angles (0^, 

Yi)B with respect to the common and fixed cartesian coordinate system, 

R. These angles are chosen to maintain the mutual orientation between 

tensors A and B. The second transformation for B, characterized by (0, 

0, 4>) is performed identically as for A. The characteristic frequency 

oiCSl) is finally obtained by summing over all the transition frequencies 

in [8] and [9] after the above double frame transformation. 
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EXPERIMENTAL 

The NMR spectra were taken at three different magnetic fields with 

Z^Na resonance frequencies of 14.8, 58.23 and 92.3 MHz. The spectra 

were taken on a home-built spectrometer similar to that described 

previously.22 Variable temperature experiments performed at 58.23 MHz 

used a home-built cryogenic system and a Scientific Instrument 

temperature controller. Variable temperature experiments performed at 

92.3 MHz used an Oxford Instruments cryogenic temperature control 

system. 

The sample chamber temperature was controlled by a flow of liquid 

helium or liquid nitrogen. A Constantan vs Alumel thermocouple 

monitored the sample temperature to an accuracy of ±1.0 K. The lowest 

stable attainable temperature was 49K. Below this temperature, the rf 

coil began to arc-discharge in the helium gas. 

The T]^ measurement was obtained through progressive saturation of 

the transient signal after a string of ii/2 pulses separated by variable 

spacing T. These values of Ti ranged from =6 msec at 77K to =20 msec at 

room temperature for sodium. A recycle time of 160 msec was therefore 

used at all temperatures. 

An Andrew-Beams type rotor was used in the variable-angle spinning 

and MAS experiments at 58.23 MHz. Spinning speeds varied from 4.2 kHz 

to 5.4 kHz to differentiate the rotational side bands. 

Tuning of the spectrometer was achieved using 7M aqueous NaCl. ii/4 

nominal pulse widths were used at all fields, following the (1+1/2) 

scaling relation^^ for weak quadrupole nuclei. Experimentally, this 

pulse also yielded the maximum signal. 
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A 4.0 mm o.d. teflon tube was used to contain the sample instead of 

the pyrex glass tubing which contains sodium. To avoid interference of 

the G^Cu resonance from a copper coil, silver wire vas used in 

constructing the rf coil in the static, the spinning and the variable 

temperature NMR probes. Although no consistent background signal was 

observed, background scans were still taken for each variable 

temperature measurement. 

The receiver dead time and giant pulse breakthrough was reduced to 

5.5 u sec, after series L-C circuits were inserted between each stage of 

the video-amplifier. The linear phase error produced by the truncation 

of the initial time decay is numerically corrected by a linear phase 

correction after each Fourier transform of the spectra. 

The NaMo^O^ samples were supplied by C. Torardi and R. E. McCarley. 

Detailed descriptions of the synthesis and the structural parameters of 

the compound are given in references 14 and 15. 
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RESULTS and DISCUSSION 

Determination of the interaction parameters 

The parameters of each individual spin interaction governing the 

sodium nucleus are determined first in this section. Details of the 

variable temperature NMR line shape studies will be discussed in the 

latter section. 

From the crystallographic structure, a"(Na-Na) is estimated to be 8 Â 

and S'CNâ-Mo) is = 6. The Mo nucleus has a relatively weak quadrupole 

moment and small gyromagnetic ratio, while the nucleus, ^^0, the closest 

nucleus to sodium is spin zero and the natural aboundance of the 1= 3/2 

isotope ^^0 is only 0.372 %. Under these circumstances, sodium can be 

considered as an isolated spin. The two major interactions governing 

sodium are the chemical shift anisotropy and the electric field gradient 

interaction. Homonuclear and heteronuclear dipolar interactions can be 

neglected. 

The parameters of the quadrupolar interaction of ^^Na in NaMo^O^ are 

first determined by variable- and magic-angle sample spinning (MAS) At 

58.23 MHz and 298 K. The MAS line shape of the center band of the 

central transition shows the split that is characteristic of an axially 

symmetric e.f.g. tensor (Fig. 3). A simulation of the central 

transition line shape under MASlO,ll,12 j_3 superimposed on the 

experimental spectrum in the inset of Fig. 3. In the calculation, the 

quadrupole coupling constant (QCC), e^qQ = 1.58 MHz, the asymmetry 

parameter r>=0.2 and the isotropic shift -36.3 ppm as listed in 

Table I. The discrepancies between the calculation and the experimental 
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data are due to the nuclear motion and the interference of the satellite 

Room temperature NMR spectra taken at three magnetic fields are 

shown in Fig. 4. Approximate parameters of the shift interaction have 

been determined by mapping the singularities of the spectra taken at 

three different magnetic fields. The singularities in the dovnfield 

portion follow an inverse field scaling relation. This implies that the 

shift interaction, linearly proportional to the field, is much smaller 

than the second order quadrupolar interaction. Notice that the inverse 

relation does not apply to the upfield shoulder and is completely absent 

for spectra taken at 14.82 MHz. 

The center of mass has been shifted from the true chemical shift 

value due to the second order quadrupole interaction.24,25 The second 

order quadrupolar shift, Cqg can be calculated from the coupling 

constants and the asymmetry. Written specifically for spin 1=3/2, the 

constant F equals 

The second order quadrupolar shift Cgg equals -F/3 for the central 

transition and 2F/3 for the satellite transition. The values of the 

measured center of mass, the calculated quadrupolar shift and the 

corrected chemical shift are listed in Table I. Also shown are the same 

parameters obtained from the MAS experiment. The isotropic chemical 

shift is less accurate at low fields due to the fact that higher order 

perturbations become important and larger errors occur in evaluating the 

first moment of the broader spectra. The averaged value of c^^=-22±5 

transition side bands. 

(1+ ï') [12] 
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ppm referred to the saturated NaCl aqueous solution is obtained. 

Variable temperature NMR 

Variable temperature measurements at 58.23 MHz are shown in Fig. 5. 

The spectrum is a single peak at 78 K and gradually splits into two 

peaks which continue to sharpen as the temperature increases. A third 

peak appearing at the high field side of the major resonance also 

becomes observable at = 140 K. The exact temperature for this upfield 

shoulder to emerge can not be determined. This peak seems to remain at 

= 150 ppm to room temperature and then gradually coalesces with the 

downfield major component of the resonance as the temperature further 

increases. To better study the "anomalous" upfield peak, the 

experimental temperature was further raised to 403 K in the VT 

measurement performed at 92.3 MHz. The spectrum is shown in Fig. 6 for 

several selected temperatures. The major features of the spectrum are 

quite similar to that observed at 58.23 MHz, with resonance of the 

downfield portion scaled approximately 1.6 times in kHz unit and =2.5 

times in ppm units. The tendency of the upfield shoulder to shift 

toward the major resonance as the temperature increases is well 

illustrated. 

The central transition line shape of ^^Na changes with variable 

temperature from a nonaxial symmetry-like spectrum at 78 K to an axially 

symmetric appearing spectrum at room temperature. This behavior may be 

due to: (a) the gradual shifting of the equilibrium position from 

nonaxial e.f.g. symmetry to an axially symmetric environment as 

temperature increases; and (b) the exchange average of the sodium nuclei 
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between sites possessing a nonaxially symmetric e.f.g tensor is averaged 

under rapid motion and yields an effective axially symmetric e.f.g. 

tensor at high temperatures. The first possibility is inconsistent with 

the anomalous thermal ellipsoid observed in the room temperature x-ray 

diffraction data. The second possibility is examined using an analysis 

of the central transition line shape under dynamic motion taken to 

second order. 

Calculation of the central transition line shape under motion 

According to the symmetry of the structure, dynamic motion may take 

place between four equivalent but off center of the sodium sites shown 

in Fig. 7. Due to the chemical equivalence of these sites, identical 

ground state energies can be inferred, hence unit vector for ^ in [4] 

can be assumed. From this model, two different"types of discrete site 

jump motions are considered. The first is that the jumps take place 

only between the nearest neighbors. The other is that the jumps occur 

between all four sites- These two motion models are shown in Fig. 7. 

In this dynamic system, the reference frame, (%%, Yj^, 2%), is chosen for 

convenience with Zg being the motional axis which is parallel to the c 

axis of the crystal, and with Xp, and Yj^ axes in the motional (a-b) 

plane. 

A brief description of the calculation is given. The transient 

signal, G(t), related to a specific spatial orientation, (9, <!>) is first 

calculated according to [4]. In this calculation, the argument of the 

exponential is a nondiagonal matrix. The quantity G(t) is calculated 

following the so-called QR transformation^^ by diagonalizing the non-
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Hermitian exponential argument. Simplification of the treatment can be 

achieved using the analytical expression, [4], associated with either a 

simple two site jump,27 or an all site exchange.28,29 pqj. calculating 

the powder line shape governed by a specific type of dynamic motion, the 

above procedures are repeated for each random orientation (9, <t)). The 

final averaged transient decay is obtained by summing all individual 

transient signals associated with one specific orientation after 

multiplying by the probability, sin© d0 d<j>. The powder averaged spectra 

is then directly calculated by Fourier transforming the averaged 

transient decay. Reference 16 gives further details of different 

computational approach. 

The dynamic spectra of a quadrupolar nucleus are dependent upon: 

(a) the geometry of the distinct sites involved; (b) the orientation of 

the e.f.g. tensor at each distinctive site with respective to the 

reference frame as characterized by , Yi)Q> (c) the interaction 

parameters; the quadrupole coupling constant e2qQ, the e.f.g. asymmetry 

and the isotropic shift erg; and (d) the dynamic exchange frequency. 

In the presence of a nonnegligible shift anisotropy, the results will 

also be dependent upon the orientation of the shielding tensor to the 

reference frame, (ocj^, Yi)cs' shift interaction parameters, 5, 

and shielding asymmetry 

In the following, the second order central transition under the 

model of a four site exchange with nearest neighbors is considered 

first. Calculations for four different e.f.g. tensor orientations under 

various exchange frequencies are shown. The parameters e2qQ= 1.58 MHz, 

M0= 58.23 MHz and 1=3/2 are chosen to be the common parameters. 
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In the first calculation, the dynamic NMR spectra calculated to 

second order in perturbation theory for an axially symmetric e.f.g. with 

orientation (oe^, yi)q = (-90., 90., 90.) is considered. This e.f.g. 

orientation in the four sites jump model is shown in case (a) of Fig. 8. 

The calculated spectra are shown in Fig. 9(a) for six jump frequencies. 

It is seen that in the slow jump regime, the spectra exhibit an axially 

symmetric central transition. As the jump frequency increases, the 

asymmetry remains as seen from the two peak feature that is 

characteristic of the axially symmetric e.f.g., but the effective 

quadrupole coupling constant as reflected by the splitting between the 

singularities has been scaled by 1/2. The same calculation repeated for 

the case, T)=1.0 shows no change with jump frequency and exhibits a 

nonaxially symmetric transition. This behavior can be seen from Fig. 

8(a) that under all motional frequencies in the XR-YR plane, the 

effective e.f.g. component q^^ and q^g remain unchanged for n=1.0 at 

this specific tensor orientation but is scaled by 1/2 for the case l>0.0 

in the rapid motion regime. In both cases the asymmetry, n, still 

remains constant. 

To demonstrate that this behavior is dependent upon the orientation 

of the e.f.g. tensor with respect the the molecular frame, the case of a 

nonaxially symmetric e.f.g. tensor with orientation (a ,̂ yi)q = (0., 

-45., -90.) is considered, and is shown as case (b) of Fig. 8. The 

calculated spectra of the second order perturbed central transition are 

shown in Fig. 9(b). In the low jump rate regime, the spectra show a 

typical static central transition spectrum, 1>1.0. In the high jump 

regime, the resulting spectra do not resemble the static spectra with 
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any e.f.g. asymmetry. 

In the third case, we consider again a nonaxially symmetric e.f.g. 

tensor, r>=l, with the e.f.g. orientation coincident with the reference 

frame, R, in Fig. 8(c). The calculated powder spectra of the second 

order central transition under a four site jump model are shown in Fig. 

9 (c). The change from a nonaxial symmetric-like spectrum to an axially 

symmetric-like spectrum in the high jump rate regime is again due to the 

fact that the components and qyy components are averaged to the 

value of (qjjjj+<îyy)/2 in the rapid jump regime. In contrast to the first 

calculation performed, the effective quadrupole coupling constants, e^qQ 

is not changed due to the motion. This is expected since the q^^ axis 

is parallel to the jump axis and will not be altered with varying jump 

frequency. Any change of the quadrupole coupling constant observed 

experimentally, therefore, must be due to the interaction between the 

lattice and is independent of the dynamic motion of the sodium nucleus. 

Finally the effects of shift anisotropy are demonstrated in Fig. 9 

(d). The parameters for the quadrupole interaction are the same as 

those in the previous case. The shift parameters are chosen to be 5 = 

-16 ppm, and 0.4. The orientation of the shielding tensor is (aj, 

Yl)cs = (0., 0., 0.), coincident with the e.f.g. tensor. These 

spectrum (vide infra) most resemble the experimental variable 

temperature spectra. Due to the the .relatively small contribution of 

1.2 kHz shift anisotropy as compared with the = 8 kHz second order 

quadrupole residual line width the spectra will be very little dependent 

upon the shift orientation, (a^, '^'l^cs this calculation. 
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In the calculation, we use a 3.0 kHz wide Gaussian broadening 

function which is multiplied with the powder averaged transient decay 

before the 256 point Fourier transform. The powder average uses a 4.0 

degree mesh in (0, (|)) angles with time increments equal 1/6 where A is 

the total spectral width (= 20 kHz) desired in the calculation. 

From these calculations it is observed that: (a) the experimental 

spectra resemble most the fourth case, i.e., q^^ of the e.f.g. tensor 

being parallel to the jump axis; and (b) the upfield shoulder appearing 

in the high temperature region is not predicted by sodium nuclear 

motion. 

With these results as hints to what might be happening with the 

sodium in NaMo^Og, an iterative calculation is performed using only the 

the downfield portion of the variable, temperature spectrum, neglecting 

the upfield features for purposes of the zero order fit. To reduce the 

variables involved in the iteration, the parameters for the shift 

interaction are held constant. The orientations of the e.f.g. tensor 

and shielding tensor are identical to that shown in Fig. 8 (d) where the 

principal Z axis of the tensors are coincident with the motional Z axis. 

The three fitting parameters are ri, the e.f.g. asymmetry; e^qQ, the 

quadrupole coupling constant; and ctq» the isotropic shift. 

The results of the line shape simulation are now discussed. The fit 

for the dynamic motion of sodium at room temperature for two fields are 

shown in Fig. 10. Other then the upfield peak, the calculated downfield 

portions of the spectra are compare quite well with experiment. The 

major differences for the two dynamic models, i.e., a nearest neighbor 

and an all site exchange, appear in the low jump rate region and give 
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indistinguishable spectra when the jump rate becomes higher. To 

differentiate the type of motion, detailed studies should be performed 

in the low jump rate regime. This is not possible in the current case, 

due to the smoothing of the experimental spectra. 

A plot of the log of the jump rate obtained from the dynamic NMR 

line shape analysis against inverse temperature is linear, as shown in 

Fig. 11. Assuming that the activation energy, E^, is independent of 

temperature, E^is determined to be 1.95 Kcal/mole from the slope.30 

In the line shape analysis, the quadrupole coupling constant e^qQ 

shows gradually increased from 1.12 MHz at 78 K to 1.6 MHz at 300 K 

while the asymmetry parameters maintains constant at % = 0.95± 0.1 

throughout the calculation. The experimentally observed change of the 

spectra from a nonaxially symmetric at low temperature to an axially 

symmetric-like spectra in the high temperature region is well accounted 

for by the calculation. 

The strong temperature dependence of the QCC is typical of 

quadrupolar nuclei. In Fig. 12 the quadrupole coupling constant 

obtained through the fitting is plotted vs. temperature. Although the 

temperature dependence of the quadrupole coupling constants need not be 

linear, the data seem to be well divided into two linear regimes where 

straight lines are drawn through the points to show the differences. 

The temperature coefficients, (3e^qQ/3T)p, are found to be 1.5 kHz/K and 

3.9kHz/K respectively above and below =140 K. As mentioned previously, 

this change is not related to dynamic motion, but rather to either the 

change of the equilibrium position of the sodium nucleus or to 

interaction with the lattice. The increase in QCC with increasing 
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temperature implies that as the temperature increases, the amplitude of 

the sodium motion becomes larger and larger, i.e.; the stationary sodium 

position moves further and further off center of the tetragonal channel, 

therefore experiencing a stronger e.f.g. with motion, even though the 

motion results in an averaging of the q^x and qyy components and 

produces a symmetric-like e.f.g. 

The study of the temperature dependence of the QCC constants makes 

it possible to derive interesting information concerning properties (in 

particular, microscopic ones) of the crystals. Qualitatively, from the 

different temperature coefficients, (3e2qQ/3T)p, in the two temperature 

regions it can be readily inferred that the internal pressure at the 

sodium site differs above and below temperature 140 K. Although the 

actual value of the internal pressure is to be determined by combining 

with variable pressure studies, this conclusion already suggests that a 

phase transition may take place. A first order phase transition can be 

excluded since the change in crystal cohesive energy will be reflected 

in the sudden jump of the activation energy, E-, and hence will show the 

jump discontinuity in the Eyring plot (Fig. 11). This behavior is not 

observed. The suggested phase transition also accounts for the 

appearance of the anomalous peak as discussed in next section. 
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STRUCTURAL INCOMKENSURATION 

The simulation of the dynamic NMR line shape for systems exhibiting 

multisite jump exchange motion correlates veil with the dovnfield 

features of the variable temperature NMR spectra taken at 92.32 and 

58.23 MHz. The appearance of the upfield peak, however, can not be 

explained by the exchange motion models under any combination of 

interaction parameters and was neglected in the theoretical calculation 

of the dynamic NMR spectra. Several possible sources of this high field 

peak are now discussed. 

The mutual orientation between CSA and e.f.g. tensors dictates the 

shape of the static central transition spectrum, particularly when the 

two interactions are of comparable "size".^'^ Hence it seems reasonable 

to attribute the occurrence of the upfield peak to some unique 

orientation of the two interaction tensors. After examining the 

singularities at the highest field for two oriented interaction tensors 

as a function of the magnetic field, it is found that the upfield 

singularity is much too large to be accounted for by differing 

orientations of the shielding and e.f.g. tensors under any combination 

of the interaction parameters. The approximate inverse magnetic field 

dependence of the singularities and the measurements from the MAS 

experiments also indicate that the effect of the chemical shifts upon 

the spectra are relatively small. Therefore relating the high field 

peak to the unique orientation between the shift and the e.f.g. tensor 

is not plausible. 

The satellite transitions, (3/2, 1/2) and (-1/2, -3/2), should be 

symmetric about the center of mass according to the first order 
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perturbation theory. When the motional frequency becomes large compared 

to the splitting between the two satellite singularities, a third peak 

emerging around the center of mass of the satellite transitions is 

predicted.This dynamic phenomenon is similar to that observed for a 

shielding tensor and a Pake doublet spectrum where only the first order 

effect is observed.16,31 The increasing sharpness of the upfield peaks 

as the temperature increases seems to support this behavior. However, 

it may be shown that this peak will appear at the downfield side of the 

central transition instead of at the upfield side. From data listed in 

Table I, for a spin 1=3/2 nucleus at \iQ =58.23 MHz, the second order 

quadrupolar interaction shifts the central transition =19 ppm upfield 

from the true isotropic value. Hence the center of mass of the 

satellite transition should be shifted =38 ppm downfield from the true 

isotropic chemical shift. This is to say that the center of mass for 

the satellite transition should appear = 57 ppm downfield from the 

center of mass of the central transition. This conclusion is opposite 

to the observed behavior of the upfield peak in so far as the position 

and the sign are concerned. For a quadrupolar nucleus with e^qQ = 1.58 

MHz and ri = 0, the satellite splitting will be = 400 kHz. From the 

dynamic line shape simulation, the motional frequency at room 

temperature is about 70 kHz. This value is too small to yield extra 

peaks associated with the satellite transitions. 

The off-diagonal elements in [6] have been neglected in calculating 

the characteristic frequencies as shown in [9]. A similar truncation 

has also been performed in evaluating the MAS powder spectra. 

Incorporating the nonsecular terms shows somewhat different results^ but 
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does not predict any features of the line shape. To attribute the 

upfield feature to the nonsecular term in [6] is, therefore, not 

plausible. Considering particularly the gradual coalescence of the 

upfield peak with the major portion of the spectra as the quadrupole 

coupling constant increases with increasing temperature, this 

possibility can be excluded. 

To attribute the upfield resonance to the presence of an impurity 

sodium phase is not in accord with the X-ray powder diffraction of the 

sample used in the NMR experiments. Identical spectra are obtained when 

repeating the variable temperature measurements using a newly prepared 

samples. The inverse field dependence of this peak in frequency units 

also excludes the possibility that this peak is due to either extra 

sodium phase or the copper background from the probe body. 

From the above discussion, it is concluded that: 

(1). The upfield singularity does not originate from noncoincident 

orientations of the shielding and e.f.g. interaction tensors. 

(2). The upfield singularity is not part of the first satellite 

transition of sodium nucleus under dynamic motion. 

(3). The off-diagonal elements neglected in the magnus expansion, 

[6], do not produce the upfield features. 

(4). The upfield peak is not due to the impurity sodium phase, or 

from copper resonance of the probe background. 

There is considerable evidence that the line shape of the wide-line 

NMR spectra of quadrupolar nuclei are subject to a random variation of 

the local environment of a particular nuclear site due to crystal 

defects and internal strains within the crystal.This local 
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variation results in a continuous distribution of the Hamiltonians. The 

absorption spectrum is now not only an ensemble average of the random 

orientation of the crystallites with respect to the Zeeman axis, but 

also an average of the ensemble of the translation parameters where the 

interaction parameters are characterized by some distribution function. 

Hence the powder spectra are strongly influenced by the random 

distribution of QCC, the asymmetry parameter of the e.f.g. tensor, and 

the CSA tensor. The calculation accounting for these effects relies 

upon: (a) a proper and reasonable choice of the distribution function, 

(b) the assumption that the random orientation of microcrystallites and 

the parameters distribution through lattice site are independent. 

Following this discussion, a calculation is performed using the formulae 

proposed by France.33 We.consider only the e.f.g. distribution which is 

represented by a Gaussian function, i.e., a completely random 

distribution. Results show that this distribution only broadens and 

smooths the spectrum but does not, under any circumstances, produce 

"anomalous" features at the upfield side of the central transition. 

This result gives rise to another possibility that the distribution 

of interaction parameters may have several local maxima, or represented 

by a quasi-continuous function. This type of frequency distribution has 

been recently found in the incommensurate insulator such as NaN023^ 

Rb^ZnCl^,35-37 ^^d Rb2ZnBr438,39 33 well as in the incommensurate charge 

density wave (ICDW) system associated with low dimensional conductivity 

such as VSe2,^0 NbSe2,41'42 2H-NbSe2^3, and RbgMoOg.^^ For both metals 

and insulators, the formation of structural incommensuration is 

characterized by a lattice distortion with a periodicity not necessarily 
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being a rational multiple of the fundamental lattice periodicity. The 

absence of anomalies in the resistivity measurement^^ at the temperature 

where the anomalous NMR peak emerges suggests that the phase transition 

is not electronic in nature. The transition is therefore attributed to 

the mass density incommensuration. To verify this idea, the NMR spectra 

governed by structural incommensuration are calculated and compared with 

the experiment. 

An incommensurate system in either metals or insulators manifests 

itself in magnetic resonance by the fact that the resonance frequency of 

a given nucleus depends upon the nuclear displacement of the nuclei 

relative to each other and the details of the electronic charge density. 

The real displacement of the nuclei can be described as: 

u = Acos<t>(x) [13] 

Using Landau theory,^6 the resonance frequency can be expanded in the 

Taylor series of the displacement (the order parameter) as 

1 2 2 
\k= VQ+ a^Acos<j)(x)+ 2^2^ cos <j>(x)+ ... 

= VQ+ Vj^cos<j>(x)+ \^cos*(x) + ... [14] 

A is the amplitude of the displacement and depends upon temperature as 

A= (l-T/T^)^. 3 is the critical exponent. The coefficients a%, a2,... 

depend upon the crystal orientation with respect to the magnetic field. 

To calculate the spectrum, the lattice dependent phase factor, <p(x), 

need be determined. In the commensurate structure, the phase <}>(x) is a 

constant for all unit cells. In the incommensurate structure, the phase 

of the incommensurate wave can be approximated at two limit: (a) the 
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"plane wave" limit where the phase <j)(x) is linearly dependent upon the 

displacement; and (b) the "soliton" limit where phase is governed by the 

sine-Gorden equation describing the formation of a multi-soliton lattice 

which shows commensurate domains separated by "soliton-like" domain 

walls. In the current study, only polycrystalline samples are 

available, and the "soliton" effect can not be observed. Therefore, it 

is reasonable to use the plane wave approximation and simplifies the 

calculation. 

Blinc35,37 et al. have shown that when only is present, the two 

edge singularities appear at v-"^= and when only the V2 term is 

present, the edge singularities appear at nj-mq = 0 and ^2. Since value 

of cos<J)(x) ranges between -1 and 1, the frequency distribution will be 

symmetric for odd order terms ("^i, 'Vg etc.) and will be distributed only 

on one side of the frequency when even order terms (A)2,etc.) are 

considered. In general, a combination of these terms are required. The 

calculation associated with a single crystal orientation are shown in 

Fig. 13, for various values of and M2, "03, and V4. 

To simplify the calculation of the polycrystalline spectrum 

associated with an incommensurate structure, we assume that are 

independent of crystal orientation. This implies that the resulting 

spectrum is a "convolution" of the frequency distribution associated 

with single crystal orientations with the commensurate polycrystalline 

NMR spectra of the corresponding temperature. The NMR spectrum in the 

commensurate phase has been discussed previously. As observed from the 

two "edge singularity" features of the calculation shown in Fig. 13, 

the extra upfield peak appearing in the experimental spectrum can also 
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be predicted as reflected by the presence of the singularity associated 

with the incommensurate structure. 

As observed from the experimental spectra, the position of the 

downfield components remains almost constant with temperature, while the 

spacing between the two singularities becomes smaller at high 

temperature. This implies that the even terms (\'2 and V4) in [14] are 

responsible for the observed behavior of the spectrum. From the unequal 

intensities of the upfield and downfield components in the experimental 

spectra, it is further inferred that the frequency distribution is 

mainly composed of the fourth order term V4. 

Based upon these, the NMR line shapes are calculated for various 

temperatures. The room temperature spectra taken at 58.23 and 93.32 MHz 

as shown in Fig. 14. The parameters used in this calculation are ^4= 

7.5 kHz, and 5.0 kHz at the two fields respectively. As the temperature 

increases, the coefficient V4 decreases, and the spacing between the two 

edge singularities has been reduced. This, therefore, also reduces the 

splitting of the upfield peak from the central portion of the spectrum. 

Knowing that the upfield peak position is mainly determined by the M4 

term which follows the relation, (l-T/Tj^)"^^, a fit is performed for 

"\)4(T) obtained as shown in the inset of Fig 14. From this fit, another 

transition temperature T^ is found to close to 520 K and the exponent, 

3= 0.15. 

The incommensurate-commensurate transition temperature T^, is harder 

to estimate from the line shape analysis due to the difficulties in 

observing the commensurate line in the polycrystalline sample. However, 

from the previous dynamic line shape measurements, where the apparent 

value of QCC shows a jump discontinuity at 140 K, the transition 
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temperature is estimated to be = 140 K. 

Although the above calculation and discussion shows that the 

appearance of the upfield peak is related to an incommensurate 

structure, the exact incommensurate structure and the reason why the 

fourth order or even higher even order term dominates the frequency 

distribution still remains unclear. Two possible models are proposed, 

however, to describe the incommensurate structure and the mass density 

wave of this compound. 

Due to the off center occupation of the sodium nucleus, the electric 

dipole moment of each unit lattice is not zero with a net electric field 

perpendicular to the channel. In the temperature regime above 520 K, 

the sodium nucleus exhibits rapid anisotropic motion and gives an 

averaged position at the center of the cage where the sample becomes 

paraelectric and the effect of incommensuration is absent. In the low 

temperature regime (< 140 K) the sodium nucleus, off center in the 

channel, forms a mass density wave of integer (with four being most 

probable) multiple periodicity of that of the fundamental lattice and 

the compound becomes ferroelectric, therefore, also commensurate with 

the lattice. Between these two temperatures, the crystal symmetry 

gradually changes from a space group symmetry with possible four fold or 

two fold skew axis 4^, or 42 at low temperature to a space group 

symmetry of P4/mbm at high temperature. The electric dipole forms a 

modulation wave that becomes incommensurate with the fundamental lattice 

periodicity. As a result the quadrupole interaction, strongly dependent 

upon the electric field gradient, exhibits a quasi-continuous 

distribution due to this incommensuration. The decreasing amplitude of 
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the incommensurate modulation wave (equation [14]) with increasing 

temperature is reflected in the gradual coalescence of the upfield 

shoulder with the major component of the spectrum. When the transition 

temperature, 520 K is reached, the structure becomes commensurate and 

the upfield shoulder disappears. This phenomenon is similar to that 

observed in NaNo2 and is explained by Heine.^7 

Another possible source of the incommensuration may be associated 

with the twisting of the channel where the "phase" of the channel 

compound changes gradually or exhibit a sudden jump and twist. This 

forms a soli ton-like mass density which again is incommensurate with the 

fundamental lattice periodicity. Due to this structure, each and every 

sodium nuclei along the channel experiences a different e.f.g. This 

quasi-continuous distribution therefore gives rise to the upfield peak 

observed in the incommensurate regime. 
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CONCLUSION 

From the dynamic NMR line shape studies, it is found that the 

anomalous X-ray thermal ellipsoid observed for sodium in NaMo^Og is not 

due to isotropic thermal motion but due to anisotropic exchange motion 

between four equivalent sites, where the sodium resides off center of 

the tetragonal oxygen cluster. This result has the implication that the 

sodium atom binds more strongly with four oxygen atoms with a shorter 

bond distance than being equally shared with eight oxygens of a longer 

internuclear distance. From the dynamic line shape studies of the 

second order central transition, an activation energy of discrete site 

jump motion is calculated to be 1.95 Kcal/mole with a temperature 

independent Eg. The temperature dependent QCC determined from the 

calculation shows two linear dependent regions separated by 140 K with 

the coefficients equal 1.5 kHz/K and 3.9 kHz/K respectively. The 

difference in the temperature coefficients of the quadrupole coupling 

constant implies that a phase transition may take place. 

The anomalous upfield peak that cannot be accounted for by the 

dynamic motion model is found to closely related to the structural 

incommensuration of this channel compound. The quasicontinuous e.f.g. 

distribution associated with this phase transition predicts both the 

appearance of the upfield shoulder and the gradual shift of the 

anomalous peak toward the major portion of the spectra. The jump 

discontinuity appearing in the quadrupole coupling constant and in T^ 

further supports the incommensuration structure with the I-C transition 

temperature estimated to be around 140 K. Several incommensuration 

structure models have been proposed. 
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APPENDIX 

The irreducible components expressed by the Wigner rotation is 

R2(„j,6i,ri,e,«= £, D(?;„(0,6,«|„ [A-l] 

Inserting the appropriate rotational matrix and the principal elements 

shown in [11], the components of the second rank tensor are found: 

(1). RQ(a,g,Y,e,*) 

" ̂ 2 ^ m'=0 

+2coseein0(cos3singcos2ocos2-singsin2osin2) m' =+l 

2 
+sin^6( ^c0s2MC0s2g-singsin2gsin2g)} m' =+2 

2 
+ PQ{ p^fcosEO'PgCcosg) - 3cos6sin0cosgsingcos2 m'=0, 

+ cos^9sin^gcos2S } m'=+2 

(2). R2(a,6,Y,e,*) 

= P2 { cos9sin0sin^^os2a m'=0 

2 1 
+2(cos e-T")(cos3sin6cos2acos2-sin3sin2c<sin2) 

-icos9(cosgsingcos2osinS+singsin2otcos2) m' =+ 

+cos6BinG( ^cos2otcos2g-singsin2csin2g)} 

2 
-isin0(^^^2^ ^ cos2ocos2S2-singsin2ocsin22)} m'=± 
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+ Pq{ cosGsine-PgCcosg) m'=0 

O 
cosgsing [cos29cos2+icos6sin2] m'=±l 

+4|- sin^g [cosQsin9cos2S-isin6sin2S] } - m'=±2 

(3). R2(a,g,Y,e,<t.) 

= sin^9sin^gcos2a m'=0 

-cos6fein0(cosgsingcos2ciEOsS2-sin0sin2osin2) 

isin9(cosgsingcos2asin2-singsin2o(cos2) m'=+l 

1+cos 9 ̂1+cos g cos2ocos22-singsin2osin2S) 

2 
cos8(^^^2^ ^ cos2osin22+singsin2ocos22)} m'=±2 

+ PQ [ sin^8'P^(cos6) m'=0 

O 
cosgsin3(cos9sin0cos2-isin0sinS) m'=+l 

2 
+4|- sin^g( — cos2S2-icos9sin22) } m'=+2 

Relations R_^ = R^* and R_^ = -R^* give expressions of the other 

two components. The sign, * represents the complex conjugate of the 

quantity. In the above, S = <J> + y- Note that m" equals 0, 2 only. The 

components of the individual terms of the first summation in [A-1] is 

denoted at the right side of each terms. The Euler angles have been 

defined in Fig. 2. 
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Table I 

List of center of mass second order 

quadrupole shift aqg and the chemical shift 

v(MHz) ^qs^PP"") PcsfPPm) 

14.82 220.0 

58.23 -13.5 

92.30 -25.5 

58.23(MAS) -20.0 

284.9b -64.9 

18.9b -32.4 

7.5b -33.0 

16.3 -36.3c 

^ Center of mass was obtained by zeroing the first moment, 

b Calculated from equation [12] using e^qQ =1.58 MHz, r>=0. 

c Calculated from the average of the rotation side band.^^ 
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Figure 1. Three dimensional view of the NaMo^Og crystallographic 

structure as seen along the c-axis. The thermal ellipsoid in 

the a-b basal plane is abnormally large. 
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Figure 2. Relative orientation and the transformation in the presence 

of two interactions for one of the discrete sites in the 

dynamic system. Interactions A and B are oriented with fixed 

angles (a, (3, Y)a and (a, P, Y)B with respect to the 

reference frame. This maintains the mutual orientations 

between the interactions. 
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Figure 3. magic-angle spinning spectrum at 'Vq = 58.23 MHz is shown 

together with the static powder spectrum. The spinning rate 

varies from = 4.2 kHz to 5.4 kHz to differentiate the side 

bands. In the inset, fitting of the center-band of the 

quadrupolar MAS spectra is superimposed with experiment. 

Parameters in the calculation are: >>=0.2, e^qQ/h= 1.58 MHz 

and ^cs" -36.3 ppm. 



www.manaraa.com

-I 0 I 2 3 4 

i 

20  

58.23 MHz 

STATIC 

MAS 

J I I 
10 0 -10 -20 

Frequency (KHz) 



www.manaraa.com

Figure 4. Room temperature NMR spectra taken at 92.32, 58,23, and 

14.82 MHz respectively. The central transition spectra is 

governed by both the second order quadrupolar interaction and 

the shift interaction. The inverse field dependence shown in 

the line vidth and the critical frequencies in frequency 

units are characteristic of those transitions governed by 

second order perturbation, implying the contribution from 

shift anisotropy is relatively small. 
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Figure 5. The variable temperature ^S^a NMR spectra from 80K to 298K at 

\Q= 58.23 MHz. Notice the gradual change of the asymmetry of 

the central transition from = 1.0 at low temperature to in = 

0.0 at room temperature. The upfield shoulder gradually 

coalesces with the major component of the spectra. The 

upfield shoulder is associated with the appearance of 

structural incomrssnsuraticn. 
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Figure 6. Variable temperature 23^% NMR spectra at -^0= 92.32 MHz are 

shown. Note the gradual dovnfield shift of the upfield 

shoulder as the temperature increases to 403 K. The major 

features of the variable temperature spectra are similar to 

that of 58.23 MHz but scaled by a factor of roughly 1.58. 
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Figure 7. The possible fourfold jump model and the relative 

orientations of the e.f.g. tensor at each distinct site, 

viewed in the c axis direction of the tetragonal structure, 

i.e., along the channel direction. 
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Figure 8. The four relative e.f.g. tensor orientations in the above 

calculation are shovn. The Euler angles are written for the 

first site with respect to the reference frame (Xj^,Yj^, Zj^). 

The shielding tensor should in principle be oriented 

independently from that of the e.f.g. tensor. 
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Figure 9. Theoretical NMR spectra for four site exchange motion for the 

four different e.f.g. orientations. The parameters used in 

the calculations are; e2qQ= 1.58 MHz, BQ= 58.23 MHz, 1=3/2. 

The individual parameters are: (a) 1>0, (cx,g, Y)= (-90., 90., 

90), (b) 1>1.0, (oc,p,r)= (0., -45., -90.0) (c) 1>1.0 

(a,g,y)= (0-, 0., 0.), and (d) same as (c) but incorporate 

CSA with 5 = -16 ppm, 0.4. See text for the detail of 

this calculation. 
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Figure 9 (continued) 
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Figure 10. Typical iterative fitting results shown for the two room 

temperature spectra taken at mo= 58.23 and 92.32 MHz. 

Parameters used in the calculation are e^qQ = 1.58 MHz, 

1>0.95, k= 70 kHz, 5= -16 ppm., lri^,g=0.4, (TQ= -36 ppm. 
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Figure 11. A plot of the exchange rate against the Inverse temperature. 

From the linear relation, the activation energy Eg is 

calculated to be 1.95 Kcal/mole. 
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Figure 12. A plot of the temperature dependence of the QCC. Two linear 

regimes can be .resolved. The coefficient, 3e^qQ/9T, equals 

1.5 kHz/deg and 3.9kHz/deg respectively above and below 140 

K. 
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Figure 13. Calculation of the frequency distribution from [14] in the 

incommensurate regime for various values of coefficients 

The phase, *(%), in the calculation is evaluated from the 

"plane wave" model, i.e., *(%) = ex. 
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Figure 14. Simulation of the room temperature NMR spectra taken at two 

different fields incorporating the frequency distribution 

governed by the structural Incommensuratlon. The 

distribution is dominated by the term. In the inset, the 

amplitude is plotted with the temperature, from which 

the transition temperature Tj = 520 K and the critical 

exponents =0.15 can be found. 
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PART IV. CHARACTERIZATION OF HYDROGEN IN Zr6Cli2H AND ZrClO^Hy: 

STUDIES OF INTERSTITIAL HYDROGEN WITHIN METAL CLUSTERS 

BY SOLID STATE NUCLEAR MAGNETIC RESONANCE 
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Characterization of hydrogen in ZrgCli2H and ZrClOyHy: 

studies of interstitial hydrogen within metal clusters 

by solid state nuclear magnetic resonance 
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ABSTRACT 

Solid state NMR studies of hydrogen have been performed on samples 

of the cluster compound Zr5Cl]^2^ that contained discernible amounts of 

the layered ZrClO^Hy (x + y < 1) impurity phase. The hydrogen in 

ZrgCl]^2H resonates at 500 ppm upfield from H20(l) at 298 K and shows a 

strong Curie-Weiss paramagnetic shift relation but no change in line 

width; cr(ppm) = 2.234-10^T~^(K)-241.04. This temperature dependence 

indicates the presence of unpaired electron density in the proton 

environment, consistent with the odd electron count in and paramagnetism 

expected for ZrgCli2H. Total suppression of this resonance under 

multiple pulse homonuclear decoupling indicates that the hydridic 

species therein experiences rapid random motion with a correlation time 

shorter than 18 usee (> 50 kHz), consistent with the oversized Zrg metal 

cluster cavity available. These results are consistent with many 

observations on other interstitial atoms in Zrg octahedral clusters and 

with the strong correlation of yield with the presence of H2 in earlier 

synthesis of several "ZrfiCl]^2" phases. 

The second hydrogen species exhibits a broad temperature-independent 

resonance with center of mass at -5.0 ppm. Experiments involving a 

variety of nuclear spin dynamics indicate that the primary contributions 

to this signal come from pairs of hydride with ôr(H-H) = 2.5+0.2 Â and 

each of these protons interacts to a lesser degree with one or more 

chlorine atoms at a a'(H-Cl) > 2.7 Â and with shift parameters 5=-22.7 

ppm, 1>0.6. A third, minor species with center of mass at -5.5 ppm, is 

postulated to originate from isolated hydride units in the same phase. 

These parameters and the observed orientation of the principal axis of 



www.manaraa.com

182 

the H-H dipole interaction with respect to the shift tensor are 

completely consistent with the structure of the ZrClO Ĥy (x + y < 1.0) 

phase observed in the samples by Guinier diffraction. 
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INTRODUCTION 

Although the metal cluster phase Zr5Cli2 has been known for some 

time,l'2 questions concerning its actual composition and stability as an 

empty cluster remain. The compound was initially discovered in small 

amounts following ZrCl/ZrCl^ equilibrations near the composition ZrCl2'^ 

The structure deduced by X-ray powder diffraction was identical to that 

of 'Zrgli2', which is now known to actually be Zr&Ii2C ^ with carbon 

centered in the metal cluster.However, consistent preparation of 

ZrgCl]^2 vas never achieved, and sufficient quantities for physical 

property measurements were not obtained. 

More recently, Imoto and Corbett^ serendipitously obtained ZrgCl]^2' 

ZrgBrj2 and the related M2ZrCl6-ZrgCli2 (=f^2^^7'^^18' M=Na, K, Cs) double 

salts by the thermal decomposition of ZrX (X=C1, Br) in the presence of 

H2 and, when appropriate, MCI near 750°C. Good yields of the clusters 

were obtained, but these were contaminated by sizable amounts of 

inseparable ZrH2_x, the other product. Reactions with Zr:Cl ratios more 

appropriate to the composition of the cluster phase were not attempted. 

The greatly improved yields of ZrgCl]^2 achieved in the presence of 

hydrogen and its 0.3% larger lattice, parameters compared with those from 

the earlier ZrCl/ZrCl^ equilibrations^ led to speculation that ZrgCli2 

might exist both as an empty cluster and as a hydride, similar to Nbglii 

and 

Solid state NMR spectra of small samples of the ZrgCli2 

Na2ZrCl6'Zr6Cli2 prepared earlier under hydrogen showed only broad 

Lorentzian-shaped resonances (56-41 kHz at '\^=56 MHz) which were 

attributed to the ZrH2_x contaminant in the samples. The NMR spectrum 
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of in binary compound ZrH^g vas featureless, and showed 55 kHz wide 

resonance under similar conditions. The homogeneously dipolar broadened 

spectrum can be compared with the relatively sharper line observed for 

noninteractive and immobile protons in hydrogen-centered metal clusters. 

For example, the proton NMR spectrum of CsNbgliiH,? a diamagnetic, 

hydrogen-centered niobium cluster, contains a single peak 0.6 kHz wide 

(M()=35 MHz).8 Thus it was concluded on the basis of the NMR evidence 

that neither Zr6Cli2 the K^ZryClig compounds contained interstitial 

hydrogen. The greatly improved yields in the presence of hydrogen were 

attributed to the kinetic factors and to the fact that 

disproportionation of ZrCl appeared driven by the formation of ZrH2_x-

Potential causes for a broad ^H resonance in other than ZrH2_x» such as 

from a possibly paramagnetic cluster, were dismissed as was the very 

broad ESR spectrum observed for only one of two 'ZrgCli2' samples at 

room temperature.5 

Our recent studies of NMR of nuclei within a zirconium iodide 

cluster^ phase suggests that the breadth of a hydrogen NMR signal from 

ZrgCli2H could be associated with the unique structure type. Thus the 

NMR spectrum of in the diamagnetic Zrgl]^2'-' isostructural with 

ZrgCli2, contains only a very broad resonance that extends from about 28 

to 480 ppm. The breadth of the resonance is in distinct contrast to the 

well resolved resonance =38 ppm vide seen for in the paramagnetic' 

CsZrgl^^C.^ The factors responsible for the broadening of the 

resonance in the former have not been elucidated. 

The present lack of conclusive physical evidence for the presence of 

hydrogen in Zr6Cli2 appears to stem from the poor quality of the earlier 
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sample as well as the difficulties in detecting small amounts of 

hydrogen. Circumstantial evidence,^ however, indicates the presence of 

interstitial hydrogen. The idea that hydrogen could be present is 

augmented by a great deal of recent experience which indicates that a 

large number of other zirconium and scandium chloride cluster phases can 

be obtained only when an interstitial element Be, B, C,.... is bound in 

each cluster, raising the cluster-based electron count into the range of 

13-16, with 14 electrons being most favored.^'^-ll Three of the four 

signs associated with the discovery of these other interstitially-

stabilized clusters also point to interstitial hydrogen in the ZrgCl][2 

phases; low and irregular yields, an otherwise electron deficient 

cluster (12 e), and improved yields upon the addition of the appropriate 

interstitial element. The fourth sign, a residual electron density in 

the cluster center from X-ray studies, would not be expected for 

hydrogen, of course. Preparation of good quality samples appeared to be 

the key to unraveling the role of hydrogen in the preparation and 

stability of ZrgClin-

As an abundant spin 1=1/2 species, is easily detectable by NMR, 

the lower limit of detectability being roughly 10^' spins for a line 10 

Hz wide. has been the dominant NMR-active tag in chemistry of 

liquids for almost 40 years, the primary interactions used being the 

isotropic chemical shift and the isotropic scalar coupling.There are 

a broad range of transient techniques to perturb and control nuclear 

spin dynamics in order to probe the possible identities of the local 

surroundings in a solid.The presence of nearby hydrogen atoms is 

reflected in the homonuclear dipolar coupling interaction. The possible 
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location of the proton in the structure and the symmetry of the 

surroundings is probed by the anisotropic shielding. Motion of the 

protons is probed by the response of the proton magnetization to 

multiple pulse sequences with cycle times of order of the motional 

correlation time.l^ Particularly noteworthy with respect to the last 

point is the structural observation that the cavity in ZrgCl]^2 (as 

measured in K^^ryClig) is considerably oversized for a hydrogen, viz., 

3'(Zr-H)= 2.26 Â here vs. 2.08 Â in ZrH2 and 2.10 Â in Zr2Br2H, both with 

four-coordinate hydrogen. 

Possible identities of nearest neighbors may also be probed using 

homo- and heteronuclear scalar and dipolar couplings, utilizing 

differences in the dependencies of the forms of these couplings on 

spatial and spin variables and on whether or not one of the partners in . 

the coupling is a spin 1/2 nucleus. For example, dipolar couplings 

between pairs of spin 1/2 nuclei will result in inhomogeneous broadening 

which will split into sharp lines under magic-angle sample spinning 

(MAS) at a speed lover than the anisotropy of the inhomogeneous 

broadening. On the other hand, dipolar coupling between a spin 1/2 and 

a nonspin 1/2 nucleus will not be completely sharpened under MAS, and 

the resultant structure can be used as a diagnostic tool for identities 

of one of the pair of coupled atoms. Specifically as applied to the 

present samples, the presence of -H, ^^Cl (75.53% abundance) and ^^Cl 

(24.47% abundance) offers the possibility of using the heteronuclear 

coupling to discern hydrogen in the neighborhood of chlorines. A 

parameter immediately extractable from the spectra under MAS is the 

internuclear distance between hydrogen and chlorine. 
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EXPERIMENTAL 

Materials 

Because of their air- and moisture-sensitive nature, all products 

and reactants were handled under an inert atmosphere or in vacuum. 

Zirconium powder was prepared from reactor-grade crystal bar zirconium 

(<500 ppm Hf) via the thermal decomposition of ZrH2_x in high vacuum as 

previously described.^ The ZrCl^ was prepared by the direct reaction of 

the elements at 300-350°C and purified by several successive high-vacuum 

sublimations over Zr metal and through a coarse-grade Pyrex frit. 

Hydrogen was introduced into the reactions in the form of ZrH2_x which 

had been obtained from the reactions of the reactor-grade zirconium with 

hydrogen at 650°C followed by cooling under hydrogen to room temperature 

over a 6 hr period. The final hydride composition, ZrH^ 3, was 

calculated from the initial zirconium weight and the change in pressure 

of the known volume of hydrogen used in the reaction. 

Synthesis 

The reactivity of reduced zirconium halides with fused silica at the 

elevated temperatures sufficient for.clusters formation (>600°C) 

necessitated the use of welded Ta tubing encapsulated in evacuated and 

sealed fused silica jackets. Samples of ZrgCli2H were prepared by the 

reaction of Zr powder (>100 mesh), ZrCl^ and ZrH^g at 700°C over a 

two—three week period. 

Two different samples were initially prepared. Sample A, used for 

all the spectra shown, was prepared from a reaction stoichiometry with a 

Zr:Cl:H ratio of 6:12:4. An excess of ZrCl^ sufficient to give 
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approximately 5 atm at 700°C (assuming ideal gas behavior) was also 

included to reduce disproportionation of the desired cluster compound at 

this temperature. The yield of ZrgCli2H vas estimated from relative 

intensities in the Guinier powder diffraction pattern to be on the order 

of 90%, although a microscopic examination of the product suggested it 

might be* 5—10% lower. (This assessment excludes the excess ZrCl^ which 

was first sublimed off under dynamic vacuum at 250°C.) The other phase 

present was tentatively identified as ZrClOjjHy (0 < x < .43, x + y <1) 

in a ZrCl-type structure.The identification was based on line 

positions, intensities, and lattice constants determined from X-ray 

(Guinier) powder diffraction (a = 3.4854(5) Â, c = 27.04(2) Â). The 

excess hydrogen used in the Zr5Cli2^ synthesis is presumably partially 

taken up by both the Ta tube and this second oxide phase. 

Sample B was prepared under similar conditions with a Zr:Cl:H ratio 

of 6:12:1.8 and an approximately equivalent amount of excess ZrCl^. The 

yield of ZrgCli2^ was marginally lower than reaction A (=5%) with a 

slightly hydrogen-poorer ZrClOyHy (ZrCl-type structure) making up the 

difference. The identification of this oxygen-containing species 

correlates with the line shape analyses and the proton spin counting in 

the NMR experiments. 

The assignment of ZrClO^Hy as the second phase is consistent with 

the evidence obtained from a third reaction. A sample C prepared 

similarly from a mixture with a Zr:Cl:H ratio of 6:12:1.8 and =10 atm 

equivalent excess of ZrCl^ was further hydrogenated at 200°C in a Mo 

boat with 1 atm H2. The small sample size and large hydrogen volume 

prevented an accurate measure of the hydrogen uptake. However, the 
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observed conversion of the ZrClOjjHy impurity from the ZrCl- to ZrBr-

type structure was consistent with the previous experimental experience 

which showed that the ZrBr structure type is adopted by ZrClO Ĥy when 

x+y approaches unity.Unfortunately, insufficient data are available 

to estimate the amount of hydrogen in the ZrClOj^Hy in either sample A or 

B. 

The presence of an oxygen-containing phase in both samples of 

ZrgCl2^2^ is inconvenient but not particularly surprising considering the 

air- and moisture-sensitive nature of the reactants and their small 

particle size. Contamination by oxygen in any or all of the reactants 

may be at fault. Separation of the two phases is considered nearly 

impossible at the present time. 

We have also observed that Zr5Cli2^ can be prepared in good yield by 

heating the layered ZrCl2_z (3R-MoS2 structure type^) under hydrogen at 

710°C. The product is contaminated with ZrH2_x both from the degree 

that z>0 and from disproportionation owing to the high equilibrium 

pressure of ZrCl/ at this temperature. 

NMR measurements 

NMR experiments were performed at 5.2 T in a superconducting magnet 

and at 1.3 T in an iron core solenoid magnet using a home-built pulsed 

NMR spectrometer similar to that described earlier.Hydrogen 

resonates at 220 MHz and 56 MHz respectively in these two fields. A 

total of 32766 scans were required to obtain a satisfactory signal-to-

noise ratio of the transient decay signal. A simple il/2 pulse was 

applied with inverse phase cycling (alternate pulses 180° out of phase) 
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in order to minimize baseline artifacts from pulse breakthrough and 

ringing. A longitudinal relaxation time measured by progressive 

saturation yielded a value of roughly 0.1 second at 220 MHz and slightly 

less at 56 MHz. A repetition rate of 0.5 second was therefore used for 

most of the experiments. An aqueous FeClg solution was used for tuning 

the spectrometer and as a resonance frequency reference for experiments 

performed at both fields. Pure water was used as a reference in the 

spin counting experiments. 

Variable temperature experiments were performed on a home built 

cryogenic system with a Varian temperature controller to regulate the N2 

flow rate and the temperature. 

Variable-angle sample spinning experiments were performed at a home 

built CRAMPS probe^^ using a Gay type^O rotor for the sealed samples. 

The magic angle was adjusted by utilizing the Pake doublet feature of " 

the spectrum of gypsum powder. The angle 9 between the rotation axis 

and the external magnetic field was measured from the scaled Pake 

doublet of the rotational side bands according to the equation; 

ÛB = (3cos28-l). ̂  ̂ PgCcose) [1] 

AB is the splitting of the scaled pake doublet within a single 

rotational side band, and ocjj is the splitting of the static Pake doublet 

spectrum. A single sharp center peak will appear if the condition 

Scos^S-l = 0 is satisfied. The larger the value of ccj) and the smaller 

the homogeneous dipolar broadening, the more accurate the angle 9 can be 

calibrated. 
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Multiple pulse experiments were performed as described previously. 

After maximizing the power, a 1.2 usee ii/2 pulse width was obtained. 

The MREV-8 pulse cycle time was 36 usee. The scaling factor under the 

multiple pulse experiment was determined by the response of H2O at 

several off-resonance frequencies.14 

NMR data are presented on either the a scale, with increasing cr 

value corresponds to higher field, or in kHz units where more negative 

values are at higher field. All spectra are plotted with field 

increasing to the right. 

NMR spin counting 

Proton spin counting measurement was accomplished by comparing the 

zero-time free induction decay (FID) between the samples and a distilled 

water reference. The initial decay amplitude was measured by 

extrapolating the transient to the center of the preparation pulse. 

The relative ratios of the two hydrogen species observed (with 

shift) that were inferred from the integrated area of the two 

absorptions are 2.0 (-5ppm) to 1.0 (500 ppm) for sample A, about 2.2 (-

S.ppm) to 1 (500ppm) for sample B, and 4.2+0.4 (-5.0ppm) to 1 (500ppm) 

for sample C, indicating that an increasing amount of the ZrClOjjHy phase 

was produced as the preparation proceeded from A to C. 

Description of structures 

The structure of ZrgCli2H has previously been shown by Guinier 

powder diffraction to be isostructural with Zrgl22C.^'^ As shown in 

Fig. 1, the principal building block is the Zr$Cli2 cluster, a trigonal 
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antiprismatic Zrg core surrounded by 12 chlorine atoms that bridge each 

of the 12 edges. The structure is a cubic-close-packed array of these 

Zr6Cli2 clusters with the J axis of each cluster normal to the layer 

direction. An extensive sharing of the chlorine atoms between clusters 

is necessitated by the stoichiometry and the bonding requirements of the 

cluster. Specifically, the six chlorine atoms around the waist, i.e., 

those bridging edges with a component parallel to the T axis, serve as 

more distant terminal chlorine atoms to metal vertices on six adjacent 

clusters, three above and three below. The connectivity is conveniently 

formulated as [ZrgCl5^Cl^~^5/2]Cl^~^g/2, where Cl^~^ and Cl&"i reflect 

the connectivity just described while Cl^ is not shared. A hydrogen 

atom presumably is bound within each ZrgCli2 cluster, similar to that 

for the carbon atom in Zr6Cl22C. PES, dimensional and theoretical 

evidence indicate the hydrogen in such electron-rich environments should 

be considered hydridic in character. 

A ZrClOjj phase is known to form via continuous random insertion of 

oxygen into tetrahedral metal interstities in the 3R-ZrCl, a structure 

in which tightly bound slabs are formed from cubic-closed-packed 

homoatomic layers sequenced Cl-Zr-ZrrCl.The oxide derivative has 

subsequently been found to take up hydrogen as ZrClO Ĥy, evidently 

utilizing the remaining tetrahedral sites, to an experimentally 

determined limit of x + y = 1.0.(Different hydride structures are 

formed in the absence of oxygen.15) The stacking of the four-layered 

slabs is found to change from ZrCl- to ZrBr-type as x + y approaches 

1.0, a change that is not reflected in the proton NMR. 
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RESULTS AND DISCUSSION 

The Fourier transform of the FID, obtained by applying a simple %/2 

pulse to sample A at two different magnetic fields, is shown in Fig. 2. 

Two peaks were resolved at both fields. The first moment of the 

downfield peak is at -5.0 ppm as referenced to Fe+3(aq). The center of 

mass of the upfield peak is at approximately 500 ppm. The integrated 

areas of the two peaks give a ratio of about two (-5 ppm) to one (500 

ppm). The spectrum of sample B is similar to that of sample A except 

that this area ratio is slightly higher. In sample C, this ratio is 

even higher, about four to one. Of particular importance is the 

recognition that the measurements were performed on a two-phase mixture, 

with rather different properties of hydrogen in the two phases. In the 

following, the NMR spectra of the upfield and the downfield peaks are 

discussed individually and identified with Zr5Cli2^ and ZrClOj^Hy, 

respectively. 

Upfield component 

The effective transverse relaxation time T2 of the upfield peak was 

determined by nonlinear least squares fitting of the spectrum to 

Gaussian, Lorentzian, and multiplication of Lorentzian and Gaussian line 

shape functions.22 Although the relaxation times are roughly equal for 

different kinds of line shape functions, the Gaussian function seems to 

yield the best fit for the spectra taken at both magnetic fields. The 

implication is that this peak is homogeneously broadened (vide infra). 

The relaxation times and the isotropic values obtained in the fitting of 

the peaks are listed in Table I. For comparison of the line shape and 



www.manaraa.com

194 

the line width, the spectra are re-drawn in Fig. 3 with the x-axis in 

units of kHz. 

MAS experiments with a rotor frequency of -2 kHz at the NMR 

frequency of 220 MHz were performed in order to confirm that the upfield 

peak is homogeneously broadened. The line width of the upfield peak 

(7.5 kHz) changes only slightly and exhibits no rotational side bands in 

the MAS spectra, indicating that the limiting line width of the 

homogeneous broadening is approximately 5.5 kHz (T2=80 usee). This 

result correlates with the fact that the line width of this peak at 56 

MHz (4.7 kHz) is not one-fourth of that taken at 220 MHz, as would be 

expected for an inhomogeneously broadened shift interaction. 

Upon homonuclear decoupling using the MREV-8 multiple pulse 

sequence,19 the upfield peak is reduced to the noise level. This 

phenomenon has been found in several other systems undergoing rapid 

nuclear motion where the effective magnetization changes owing to the 

motion of the nuclei on a time scale shorter than the sampling time of 

the multiple pulse sequence.14,19 As a result, the transient signal is 

not coherently averaged in the stroboscopic observation windows. The 

failure to observe the upfield peak under homonuclear decoupling 

supports the idea that the proton in this environment is undergoing 

isotropic and incoherent motion with correlation time T shorter than the 

sampling time of the multiple pulse homonuclear decoupling experiment 

(18 usee). 

We now consider the origins of the large upfield shift. Consider 

first clusters with no unpaired electrons. The theoretical basis for 

the screening effect of paired electrons was initially formulated by 



www.manaraa.com

195 

Ramsey23 by evaluating the induced current from the environmental 

electron density as follows: 

(X= x,y,z) [ 2 ]  

where 

2 
J < 0X| ̂  ̂ 3^ |0X> 

e 
[3] 

2mc 

"Xp -

<0X1 •=1 1°^ 

(ieh/2mc) (Xj k 3^ - fk > 

Ramsey's formulation separates the shielding tensor into .two 

components, a diamagnetic term, uj, which is calculated from the ground 

state vavefunction, and a paramagnetic term, Cp, which involves a 

summation over all the excited states arising from the lack of spherical 

of the CTp term can be comparable with that of and can serve to cancel 

the contribution from the diamagnetic term. 

For the high upfield shift observed to occur within this model, the 

diamagnetic term must significantly override the paramagnetic term 

cTp. The disappearance of the signal under multiple pulse excitation 

implies that the proton is hopping within the cluster with a correlation 

time of less than 18 usee. This motion would considerably reduce the 

shielding anisotropy observed in a static system. Considering only the 

isotropic value in equation [2] and [3], the diamagnetic component cj 

symmetry of the electric potential at the nucleus site. The magnitude 
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becomes: 

2 
< ° #.i 1:- I 

e 
[4] 

3mc 
2 

k 

If the upfield shift is caused by the hydridic character of the proton, 

this shift should be independent of temperature because of the 

temperature independence of the electronic wavefunctions as implied by 

equation [4]. 

Another possibility to account for the observed upfield shift is 

that produced by an unpaired electron spin. Addition of a hydrogen atom 

to the empty, 12-electron ZrgCli2 cluster would result in an unpaired 

electron configuration, probably deriving from a hole in the t2g or t^y 

orbital set.^ The unpaired electron density in the ground state of the 

cluster produces a strong local magnetic field which result in a 

chemical shift to the hydrogen nucleus that is orders of magnitude 

larger than the shift usually observed in diamagnetic molecules. 

By relating the mean value of the electron magnetic moment, <5z> Co 

the bulk Curie Law magnetic susceptibility,25,26 the magnitude of the 

shift associated with the unpaired electronic spin density in the ground 

state of the Zr6Cli2Hx cluster can be found to equal to 

m a(S+l)S 
H " Yfi- 3KT 

Substituting the constants and changing unit yields 

^ = 0.01053 3^S+1)S [5] 
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where "a" is the hyperfine coupling constant in units of MHz. Variable 

temperature experiments were performed in the range from 218 to 298 K to 

verify the postulate that the unusual isotropic shift of the upfield 

peak is associated with the presence of unpaired electron spin density 

in the ground state of the cluster. The upfield peak shifts further 

upfield as the temperature decreases. In Fig. 4 the shift is plotted as 

a function of the inverse of temperature with the linear least squares 

fit passing through the points with a slope of 2.234x10^ ppm-K and the 

intercept, -241.04 ppm. The linear behavior indicates that the upfield 

peak is associated with a Curie Law type magnetic susceptibility, and 

the presence of unpaired electrons in the ground state. 

The difference of =16 ppm in the center of mass of the upfield peak 

in the spectra taken at two different fields. Fig. 2, is clearly related 

to this highly temperature dependent shift relation. A correction of 

15.4 ppm to the isotropic shift value is found from the above inverse 

temperature relation when consideration is given to the fact that the 

experiments were performed in different laboratories where the ambient 

temperatures were 19°C (•njq = 56 MHz) and 25°C (\)Q = 220 MHz) 

respectively. 

From the slope of the (ÛH/H) vs. T~^ curve (Fig. 4) the hyperfine 

coupling constant a is determined to be 28.29 MHz or 6.64 kGauss, a 

value quite typical of organic radicals.25 This shift can be related to 

the unpaired electron density at the nuclear, p(N). According to 

Fermi's formula: 

a= YRggp(N) [ 6 ]  
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p(N) is determined to be 4.27'1022 electron/cm^ which is about 0.02 

times of the unpaired electron density found at the nucleus of an 

isolated hydrogen atom.25*26 This value is also comparable with a 

variety of organic radicals. 

The above results indicate that the upfield hydrogen species resides 

in the environment of unpaired and localized electron and is highly 

mobile at room temperature. It is therefore reasonable to locate the 

hydrogen inside the octahedral zirconium cluster. Both the rapid proton 

motion and the temperature dependence of the shift described above are 

supportive of the hypothesis regarding the formation and stability of 

Zr6Cli2 (cf. Introduction), namely, that hydrogen is needed for its 

synthesis, and, as with all other examples of ZrgCli2^ clusters, the 

interstitial nonmetal atom contributes both electrons and bonding to the 

cluster.9 In the particular case of ZrgCli2H, the cavity size is 

determined largely by the Zr-Zr bonding with 11 electrons in metal-metal 

bonding t2g and t^^ sets (in the octahedral limit^). This leaves 

a'(Zr-H) = 2.26 Â, at least 0.15 Â too large for optimal bonding.5,15 

The rapid motion thus allowed prevents the observation of the resonance 

under conditions of homonuclear multiple pulse decoupling. 

NMR line shape of the downfield component 

The line shape of the downfield peak changes with applied field 

(Fig. 3). However, the line width does not scale proportionally, which 

is strongly indicative of the presence of a field-independent 

homonuclear dipolar interaction. At high fields the shift anisotropy 

seem to dominate while at lower fields, a structure that is inferred to 
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originate from inhomogeneous dipolar broadening begins to appear. The 

resulting spectra depend not only on the individual interaction 

parameters characterizing shielding and dipolar tensors, but also 

strongly on the mutual orientation between these two interactions (vide 

infra). 

In the MAS spectrum, (Fig. 5), several interesting features are 

observed from which the major Hamiltonians affecting the investigated 

protons can be determined. The bulk shape of the spectrum resembles 

that of a Pake doublet, as expected if the spectrum were inhomogeneously 

broadened by two-body homonuclear dipolar interactions. The skewed 

intensity of the rotational side band under MAS indicates that an 

asymmetric interaction of the same order of strength as the dipolar 

interaction also contributes to the spectrum. This interaction is 

attributed to the chemical shift interaction. 

Under rapid sample spinning each rotational side band splits into 

four peaks. There are three possible reasons for this splitting: (a) 

the presence of more than one hydrogen species, each possessing a 

different isotropic shift; (b) an incorrect setting of the magic angle 

such that the scaling factor P2(cos9) is not zero; and (c) the presence 

of another interaction that is not scaled by P2(cos0). 

The relative intensities and locations of the split peaks are 

reproduced in all rotational side bands. This suggests that the 

splitting does not originate from different hydridic species possessing 

different isotropic shifts, since this would produce different relative 

intensities and progressive shifts of the split peaks from one 

rotational side band to another. Therefore, the first possibility is 
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excluded. When the sample was spun at an angle of ±2 degrees from the 

magic angle, the splitting of the individual center band (as shown in 

the inset of Fig. 5) did not scale as expected for homonuclear dipolar 

interactions; therefore the residual fine structure does not come from 

an error in setting the magic angle. The rotational angle was found to 

match the magic angle to within 0.1 degree as estimated from the 

rotational side bands of the Pake doublet in gypsum. 

The variable-angle sample spinning (inset of Fig. 5) shows a 

systematic change in the relative intensities of the split peaks, with 

almost constant spacing as 9 deviates from the magic angle by ±2°. This 

behavior is characteristic of heteronuclear dipolar coupling between a 

quadrupolar nucleus and a spin 1/2 nucleus^? where the scaling upon 

rotation does not follow P2(cos9). 

Therefore, we conclude that the major contributions to the peak at 

-5 ppra are homonuclear dipolar interactions and chemical shift 

interactions with a single isotropic value. The contribution of the 

next-nearest neighbors of the proton pair to the dipolar structure 

appear to be negligible (vide infra). Although the heteronuclear 

dipolar interaction between hydrogen.and the quadrupolar spin nuclei CI 

were observed from the splitting of the rotational side band, this 

interaction is an order of magnitude smaller than the two major 

interactions. 

A line-shape simulation based upon the model of a proton pair 

experiencing dipolar plus chemical shift interactions has been performed 

and is detailed elsewhere.^8 The calculation involves both first order 

dipolar and chemical shift interactions with noncoincident tensor 
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orientations. The interaction parameters obtained from the simulation 

of the spectra at both fields are listed in Table II. 

In Fig. 6, the calculated best-fit spectra are compared with the 

experimentally observed spectra. Good agreement is obtained not only in 

the fit for a single field, but the results are also consistent for the 

fit performed at a second field. This supports the assumption that the 

majority of hydrogen atoms contributing to the downfield peak are 

isolated dipolar pairs of hydride with identical chemical shifts. From 

the dipolar coupling constants, the internuclear distance of the dipolar 

pair is calculated to be 2.5+0.2 Â. The fitting results are sensitive 

to a change in the angle g as small as two degrees, but a change in a by 

20 degrees does not produce a visible change in the spectrum. This 

explains the difference in a. between two fields given in Table II. 

Another simulation assuming that the two interaction tensors are 

coincident has been carried out as a comparison to the previous 

calculation. The fitting parameters obtained under this constraint for 

the spectrum taken at two different fields are quite different. This 

indicates that allowing interaction tensors to have nonparallel 

orientations is in general necessary, to obtain a satisfactory fit. 

In fitting the downfield peak, the small component of proton species 

appearing at the center of the spectrum has been ignored. The 

appearance of this peak can be related to either the coupling of a 

relatively distant third proton to the above mentioned proton pair or a 

small percentage of the protons experiencing equi-distant three-proton 

dipolar coupling. Another possibility is that the species associated 

with this signal are isolated protons in ZrClOj^Hy. Notice that the r~^ 
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dependence of the dipolar coupling constant implies that a proton twice 

the distance from the "isolated" pair of hydrogens that lead to the 

major portion of the downfield signal produces only one-eighth of the 

dipolar coupling strength and hence can be considered as a remote or 

isolated hydrogen. 

Finally, to confirm the above conclusion and the fitting results, we 

applied the MREV-8 multiple pulse sequence to suppress the homonuclear 

dipolar coupling. This yielded a tensor-like shielding spectrum for the 

downfield peak. A simple calculation for the chemical shift tensor gave 

an anisotropy parameter S of -22.7 ppm and an asymmetry parameter ïi of 

0.6. This further confirms the above line shape fitting. Fig. 7 shows 

the superimposed experimental and fitted shift anisotropy for the 

multiple pulse spectrum. The absence of more than a single shielding 

anisotropy contributing to the downfield proton species, as inferred 

from the MAS spectrum, is supported by the fitting of a single shielding 

tensor to the multiple pulse spectrum. 

The relative orientations of the shielding and dipolar tensors 

obtained above are shown within the layered Cl-Zr-Zr-Cl structure in 

Fig. 8 to demonstrate the presence of pairs of close hydrogen atoms in 

tetrahedral interstices. The line shape fitting predicts that the 

principal axis of the shielding tensor oriented (a, 3)= (25.P, 60.P) with 

the inter-protonic vector (Table II), suggests that the major electron 

density is distributed perpendicular to the layer as seen from Fig. 8. 

This orientation should in principle be consistent with that obtained 

through theoretical calculation using [2] or [3]. 
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Heteronuclear dipolar coupling of the dovnfield species 

The fine features observed in Fig. 5 are attributed to the 

heteronuclear coupling between a quadrupolar nucleus and a spin 1/2 

nucleus. In the system investigated they correspond to Cl and H, 

respectively. As mentioned previously, this relatively small 

heteronuclear coupling does not affect the spectrum simulation of the 

oriented dipole and chemical shift interactions for a static spectrum. 

However, upon further investigation of the fine features of the 

rotational side bands, more specific details concerning the identity of 

the downfield component can be found. 

The NMR spectra of a spin 1/2 nucleus affected by heteronuclear 

dipolar coupling to quadrupolar nuclei have been investigated.27,29-32 

In this circumstance the quantization axis of the quadrupolar nucleus 

deviates from that of the Zeeman field in the presence of the external 

magnetic field.29 This results in the product basis eigenstates for the 

two-body dipolar problem not being pure Zeeman states but a linear 

combination governed by the quadrupolar coupling Hamiltonian. The 

heteronuclear dipolar coupling is therefore strongly dependent upon the 

quadrupole coupling strength and the. mixing of Zeeman states of the 

quadrupolar nucleus. 

The heteronuclear dipolar coupling is usually small compared with 

other interactions and can be resolved only in experiments with single 

crystals or under sample spinning. For a single crystal experiment 

Natio, Ganapathy and McDowell^O found that the heteronuclear dipolar 

coupling causes nonsymmetric splitting of the spin 1/2 spectrum into 

21+1 peaks. Hexem, Prey, and Opella^^ have shown that heteronuclear 
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dipolar coupling is not averaged to zero under the magic-angle sample 

spinning i.e; it does not follow the P2(cos6) scaling relation. The 

residual line shapes of the MAS spectrum of the spin 1/2 nucleus are 

influenced by: (a) the ratio e^qQ/ooo, (b) the sign and the asymmetry 

parameter of the electric field gradient (e.f.g.) tensor of the 

quadrupolar nucleus, (c) the internuclear distance, and (d) the mutual 

orientation of the e.f.g tensor and the dipole internuclear vector. In 

the sample spinning the splitting can appear as a doublet for a small 

value of the ratio of the quadrupole coupling constant and Larmor 

frequency, e^qQ/Up and as up to 21+1 splittings vhen this ratio is very 

large. 

All the above calculations were performed for the two body problem. 

The influence of a third, either quadrupolar or spin 1/2 nucleus has not 

been investigated. In principle, a detailed line shape calculation for 

the variable angle sample spinning results can be performed to obtain 

the Cl-H internuclear distance, the chlorine electric field gradient, 

and the mutual orientation between the e.f.g. tensor and the dipole 

interaction tensor. The possibility of heteronuclear dipolar coupling 

of hydrogen to more than one CI nucleus in the system studied and the 

presence of two Cl isotopes adds additional features to the spectrum. 

Furthermore, the scalar J coupling between Cl and H is only slightly 

smaller than the dipolar coupling. These factors increase the 

complexity of an exact line shape calculation of the heteronuclear 

coupling MAS spectrum for the proton. Hence only a rough estimation is 

obtained from the previous calculations. 
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Although coupling to more than one chlorine nucleus produces a 

different spectrum, the "size" of the splitting is basically governed by 

the strongest coupling in the closest Cl-H pair, and if all chlorines 

coupled to the proton are chemically equivalent, the "size" of the 

splitting, while not additive, can be approximated by a single Cl-H 

pair. Therefore, the simplest case is assumed that allows us to apply 

the calculation performed by Zumbulyadis, Henrichs, and Young^? and by 

Menger and Veeman.?^ Comparing the three peak structure observed 

experimentally (inset of Fig. 5) with their calculations, we find that 

the ratio e^qQ/oxs equals =2.5. Since the Larmor frequency for ^^Cl is 

21.06 MHz and for ^^Cl is 17.95 MHz at this magnetic field, this yields 

a quadrupole coupling constant e^Qq of = 40 MHz from ratio e^qQ/oùo. 

This value is comparable to that of chlorine nuclei in most organic 

molecules, where typical quadrupole coupling constants are in the range 

of 25 to 35 MHz.33 The heteronuclear dipolar structure caused by the 

different chlorine isotopes could not be resolved because of the 

closeness of their Larmor frequencies. The sign of the quadrupole 

coupling constant is found to be negative (e^qQ < 0). Experimentally, 

the spacing of 950 Hz between the most upfield and most downfield 

splittings for a spin 3/2(1) coupled to a spin 1/2(S) equals = 1.6 times 

that of the dipolar coupling constant, where 

^Cl-H " ̂Cl^H ̂  / ^3 = 11.77 (kHz-Â^) r~J_g [7] 
Cl-H 

From this result, we determine that the internuclear Cl-H distance 

is roughly 2.7 A. This value is a lower limit since we have assumed the 
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strongest coupling case, as mentioned previously. 

The identity of the species associated with the dovnfield peak 

Attribution of the -5.0 ppm resonance to ZrClH is immediately 

excluded by comparison with the results of a previous study of these 

phases.34,35 ZrClH shows a positive shift anisotropy of approximately 

100 ppm which at 220 MHz should give a spectrum with at least a 20 kHz 

half width; a line width of 12 kHz is observed in the present .case. 

This downfield signal insteaded evidently arises from a small amount 

of the hydrogen-richer second phase that was identified in the sample, 

ZrClOjjHy (x < 0.4, x + y < 1). This phase has a close packed, layered 

structure sequenced Cl-Zr-Zr-Cl with 0 and H distributed randomly over 

the tetrahedral sites between the zirconium layers.This 

assignment is supported by the following NMR results: (a) The upper 

limit for the closest hydrogen-hydrogen distance in this compound is 

equal to the 2.6 to 2.7 Â oxygen separation found in the refined 

structure of ZrC10%. A value that is quite consistent with the value of 

2.5 +0.2 Â determined from the powder line shape simulation; (b) The 

hydrogen-chlorine distance in this structure is found = 2.85 Â on the 

same basis, which is consistent with the lover limit of 2.7 Â estimated 

from the MAS fine structures; (c) The variation of the ratio of the two 

peak areas with increasing hydrogen pressure used in the synthesis is 

consistent with the known nonstoichiometry of hydrogen in ZrClO^Hy. In 

addition, the change in structure of this phase from the ZrCl to the 

ZrBr type as x + y approaches unity observed with these samples is 

consistent with the previous studies of the ZrClOj^Hy sample. 
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CONCLUSION 

Proton NMR studies on nominal ZrgCli2 preparation containing minor 

ZrClO^Hy impurity levels revealed the presence of two completely 

different hydrogen species. The shift of the upfield peak at = 500 ppm 

relative to H20(l) at ambient temperature shows a linear dependence on 

inverse temperature indicating that the shift originates mainly because 

of the presence of an unpaired electron in the vicinity of the 

corresponding hydrogen nucleus. The local hyperfine splitting is 

determined from this shift-T~^ dependence to be 28.29 MHz (6.64 Kgauss). 

From the unpaired electron density, this hydrogen is located inside the 

octahedral zirconium cage where a single localized unpaired electron is 

predicted from the stoichiometry ZrgCli2H. The high electronic density 

within the Zrg octahedron and the probable hydridic character of the 

proton investigated may also contribute to the observed temperature 

dependence of the shift. Total suppression of this resonance in MREV-8 

multiple pulse experiments and the invariance of the line width to 

temperature indicate that the proton within the Zr^ metal cluster must 

exhibit a rapid random motion on a time scale short compared with the 18 

usee sampling time of the experiment, 

A second hydrogen species is observed 5.0 ppm dovnfield from H^Ofl) 

with an isotropic value that is independent of temperature. Variable-

angle sample spinning spectra show that the peak is composed of three 

major inhomogeneous interactions, namely the shielding anisotropy, the 

homonuclear dipolar interaction between a pair of hydrogens, and the 

heteronuclear dipolar interaction between the protons and one or more 

35ci (or ^^Cl) nuclei. This heteronuclear dipolar interaction is about 
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an order of magnitude less than the dominant shielding and homonuclear 

dipolar interactions. This fact allows a comparison of the line shape 

associated with noncoincident dipolar and chemical shift tensors with 

that of the static powder spectrum. The fitting shows that the dipolar 

splitting between the proton pair is 8.6 ±0.5 kHz, corresponding to an 

internuclear proton distance of 2.5+0.2 Â. The shift anisotropy 5 is 

-22.7 ppm and the asymmetry parameter, ï>=0.55. Principal axis of the 

dipolar interaction (coincide with the internuclear vector) is found to 

be oriented with Euler angles (a,g) = (25.0°, 60.0°) with respect to the 

shift tensor. Since the shift tensor is related to the electron 

density, the noncoincident orientation is found to be consistent with 

the ZrClOjjHy structure. The proton shielding parameters were confirmed 

by the homonuclear decoupling experiments using the MREV-8 pulse 

sequence. 

A simple line shape analysis of the hetronuclear dipolar interaction 

from the MAS rotation side shows that the the proton pairs in the phase 

ZrClO^Hy are coupled to one or more equivalent chlorine nuclei with a 

3"(H-C1) approximately 2.7 Â. This and the proton separation are both 

consistent with the structure of ZrClOj^Hy. 
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Table I 

Locations and the transverse relaxation times of the 

upfield peak of Zr6Cli2H at two fields 

Field Location T2 relaxation time (p sec) 

MQ(MHZ) (ppm) (kHz) Gaussian Lorentzian Lrnz*Gaus 

56.03 500.3 28.03 80.8±9.3 74.4±18. 83.7+11. 

220.15 484.2 106.6 52.5+2.1 42.5+4.2 53.4+3.1 

Table II 

Fitting parameters for the two interactions of the 

downfield peak for ZrCl0%Hy at 220 MHz and 56 MHz 

Field(MHz) DCP(kHz) 5(kHz)a n a(deg)b 3(deg) 

220.15 8.8 5.2 0.55 25.0 60.0 

56.03 9.3 1.25 0.6 45. 55.0 

® S average value = -22.9 ppm. 

^ This fit is relatively insensitive to the angle o. 
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Figure 1. A [110) projection of the structure of the Zr6Cli2H. The 

proton is believed to occupy the center of the Zrg clusters. 
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Figure 2. NMR spectrum for the Zr5Cli2H + ZrClO^Hy samples at 220 

and 56 MHz. Notice the large upfield shift at approximately 

500 ppm. 
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Figure 3. ^11 NMR spectrum of Fig. 1 re-drawn in kHz units to 

demonstrate the relative line widths. The upfield peak shows 

a good fit to a Gaussian line shape. The downfield spectra 

show the features of mutually oriented dipolar and chemical 

shift interactions. 
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Figure 4. Temperature variation of the shift of the upfleld peak 

between 218 K and 298 K. The linear relation with T~^ is 

characteristic of a Curle-Welss paramagnetic shift from a 

proton coupled to an unpaired electron. 
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Figure 5. The magic-angle sample spinning (MAS) spectra at 220 MHz. 

The Inset shows the change of the center band with sample 

spinning at 52.7, 54.7 and 56.7 degrees with respect to the 

magnetic field. The spinning frequency for the sealed 

samples is 2 kHz which allows the profile of the 

Inhomogeneous interaction to be maintained. 
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Figure 6. The fitted (bottom) vs. experimental (top) spectra of the 

down field component at 220 and 56 MHz. The parameters are 

those listed In Table II. 
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Figure 7. Superposition of a single shielding tensor with the MREV-8 

multiple pulse spectrum (36 Msec cycle time). The calculated 

parameters are 6= -22.7 ppm, 0.6 ppm. This spectrum has 

been corrected by the scaling factor 1.95. 
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Figure 8. The orientation of the dipolar and the chemical shift 

interactions of the downfield proton species, ZrClOjjHy. The 

inter-proton vector determines the Z axis of the axially 

symmetric dipolar tensor. The orientation of these tvo 

interactions is seen to be consistent with the structure. 

Parameters are those listed in table II from fitting of the 

static powder spectrum at 220 MHz. 
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GENERAL CONCLUSIONS AND APPLICATIONS 

The NMR line shape study of both static and dynamic system are 

demonstrated in four parts under different conditions. The conclusions 

and the application to an appropriate system in individual part are 

summarized. 

Part I. In a nuclear system governed by two interactions where 

neither interactions dominates, the combined effects are an 

inhomogeneously broadened spectrum which depends not only upon the 

individual interaction parameters but also strongly upon the mutual 

orientations between these tensors. The current studies shows that: 

(a) the effects of the mutual orientation between interaction tensors 

are reflected in both the static powder line shape and the distinctive 

features of the field dependent critical frequencies; and (b) the 

tensorial orientation between interactions and the individual 

interaction parameters can be determined by analyzing the critical 

frequencies (singularities, shoulders, and steps) of a powder spectrum 

vs. the magnetic field strength. 

Although the method is developed for both satellite transitions and 

the central transition of spectra of guadrupolar nuclei under the 

influence of a shift interaction, modification can be made easily to 

incorporate three interactions, e.g., quadrupolar, dipole and shift 

interactions, or to involve higher order perturbations. 

Part II. The NMR spectrum of in Cs exchanged mordenite 

indicates that the e.f.g. tensor increases with decreasing water 

content. The coupling constant increases from 210 kHz for the fully 

hydrated sample to 3.1 MHz for the anhydrous sample. Under MAS, the 
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anhydrous sample shows two peaks, with relative intensities of roughly 

1:3. Two different sites are clearly observed in the anhydrous sample 

with center of mass of the peaks at -191.0 ppm and -57 ppm. The 

assignment of the peaks to Cs locations is made on the basis of the 

structural difference of the six-ring coordination site VI from the 

eight-ring sites II, and IV. After correcting for the second order 

quadrupolar shift the down field peak, -24 ppm; may be attributed to 

site VI while sites II and IV with similar structures yield similar 

chemical shifts at -157 ppm and -186 ppm. In the fully hydrated sample 

all three sites possess an identical isotropic value of -64 ppm. 

Part III. From the dynamic NMR line shape studies, it is found that 

the anomalous X-ray thermal ellipsoid observed for sodium in NaMo^Og is 

not due to isotropic thermal motion but due to anisotropic exchange 

motion between four equivalent sites, where the sodium resides off 

center of the tetragonal oxygen cluster. This result has the 

implication that the sodium atom binds more strongly with four oxygen 

atoms with a shorter bond distance than being equally shared with eight 

oxygens with longer internuclear distance. From the dynamic line shape 

studies of the second order central transition, an activation energy of 

discreet site jump motion is calculated to be 1.95 Kcal/mole with a 

temperature independent E^. The temperature dependent QCC, determined 

from the calculation shows two linear dependent regions separated by 140 

K with the coefficients equal 1.5 kHz/K and 3.9 kHz/K respectively. The 

difference in the temperature coefficients of the quadrupolar coupling 

constant implies a phase transition may take place. 

The anomalous up field peak that can not be accounted for by the 
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dynamic motion model is found to closely related to the structural 

incommensuration of this channel compound. The quasicontinuous e.f.g. 

distribution associated with this phase transition predicts both the 

appearance of the upfield shoulder and the gradual shift of the 

anomalous peak toward the major portion of the spectra. The jump 

discontinuity appeared in the quadrupole coupling constant further 

supports the incommensuration structure with the I-C transition 

temperature estimated to be around 140 K. Several incommensuration 

structure models have been proposed. 

Part IV. Proton NMR studies on nominal Zr6Cli2 preparation 

containing minor ZrClO^Hy impurity levels revealed the presence of two 

completely different hydrogen species. The shift of the upfield peak at 

= 500 ppm relative to B^OCl) at ambient temperature shows a linear 

dependence on inverse temperature indicating that the shift originates 

mainly because of the presence of an unpaired electron in the vicinity 

of the corresponding hydrogen nucleus. The local hyperfine splitting is 

determined from this shift-T~^ dependence to be 28.29 MHz (6.64 Kgauss). 

From the unpaired electron density, this hydrogen is located inside the 

octahedral zirconium cage where a single localized unpaired electron is 

predicted from the stoichiometry ZrgCl22H. The high electronic density 

within the Zrg octahedron and the probable hydridic character of the 

proton investigated may also contribute to the observed temperature 

dependence of the shift. Total suppression of this resonance in MREV-8 

multiple pulse experiments and the invariance of the line width to 

temperature indicate that the proton within the Zr^ metal cluster must 

exhibit a rapid random motion on a time scale shorter than 18 usee. 
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APPENDIX A: COMPARISON OF DIRECT AND INDIRECT SPECTRUM CALCULATIONS 

This appendix illustrates the mathematic identity between the method 

proposed in equation [20] of Part I and other techniques developed 

earlier in calculating the spectrum. The advantages of the 

computational technique by first evaluating the FID developed here over 

other methods will be discussed in terms of the simplicity, speed and 

the easiness of formulation. 

Identity relation is illustrated by deriving the core calculation 

formulae of other direct methods from the theory proposed in the 

previous section. 

First we insert the variable 2=(9, <f>) into [20] in part I and let 

the FID for that unique orientation 2 be f(S2, t) incorporating the 

effect of spin-spin relaxation, the transient signal for a single 

quantum transition with transition probability between levels k-l and 

k becomes: 

f(S,t)=g(t)-e-i"L(G)t.^^ [20] 

Where h"wk(a)=6Gk,k-l 

<f(t)> is used to denote the powder averaged FID, and <F(w)> for the 

averaged spectrum. The averaged transient signal from [20] can be 

written as: 

<f(t)>=^ Ig dS f (2,t)=^ jJ desine Ig'^d* f (S,t) [A-1] 

The expression Jç2 dS will be used in the following for the average 

of spatial variable jsin0d0jd(j>. N is the normalization constant 

proportional to the density of the nuclei and the transition 
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probability. 

Numerically the average can be approximated by summation over 

discreet increments of angles 9 and <(). Calculating the powder averaged 

frequency spectrum on the other hand can be formulated similarly. 

Now let F(2, u) be the corresponding complex Fourier transform of 

f(S, t), the averaged spectrum will be: 

<F(w)>= ̂  dS F(2,w)= ̂  ig dS Iq dt e-i"* f(S,t) [A-2a] 

= ̂  Jq dt e"'"^ Ijj da f(G,t) [A-2b] 

Combining [A-1] and [A-2b], we obtain the well known results. 

• <F(o3)>= Jq dt e"^"^ <f(t)> [A-3] 

The real and the imaginary parts yields the in phase absorption and 

the out of phase dispersion respectively. Notice that [A-2a] and [A-2b] 

differ in the order of integration which implies that the order of 

powder average and the Fourier transform can be interchanged without 

affecting the results. Henceforth we have reached an important 

conclusion that the final powder spectrum, <F(w)> can be reached by the 

following two mathematically equivalent approaches; 

(1). By powder averaging the Fourier transform of the individual 

FID of each orientation; F(2, t) according to [A-2a] and 

(2). By the Fourier transform of its powder averaged FID <f(t)> 

according to [A-2b], or equivalently by applying [A-1] first and then 

applying [A-3]. 

It is the second approach that is taken in the present work and all 
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other line shape calculation performed in the thesis. Several 

advantages using this approaches as compared with other direct 

approaches derived from [A-2a] are pointed out later. 

Before this comparison of these two approaches, ve wish to develop 

several important fundamental relations from [A-2a] which becomes the 

bases of several well known variations of the first approaches in direct 

calculating the spectrum. And since [A-2a] and [A-2b] are equivalent, 

the following derivation implies the identity between the method 

proposed here and the other well known direct methods previously 

prescribed. 

As mentioned before, g(t) in [20] is spatially independent, it can 

be separated from the averaging over S2=(0, *) which broadens the delta 

response of F(2, w). Hence the Fourier transform of [20] yields a delta 

function convoluted with G( w). S is the Dirac delta function 

that will be zero everywhere but equal to unity when 2). and G(w) 

is the corresponding Fourier transform of g(t). From the above 

discussion the powder average for the frequency spectrum according to eq 

[A-2a] is equivalent to the following: 

I(w)=Re<F(a)>= G(») * { ̂  5(w-(^(S))d9] 

= G(co) * H(w) [A-4] 

Where * represents convolution, !((*)) is the line shape of the final 

absorption powder spectrum, and H(w) represents the corresponding 

function as understood. This equation states that the powder spectra 

are calculated by superimposing all the stick spectra corresponding to 

each unique spatial orientation Q of the K-th transition which resonates 
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at (o=a)^(S) as represented by function H(w), which is finally convoluted 

with the broadening function G(w) to yield the powder spectrum. 

Although [A-4] already provides a direct approach in simulating the 

spectrum, there are two widely used variations originated from this 

equation will be derived in the follows. 

(1). Convolution method: 

The first variation of this method is performed when function G(co) 

can be expressd by an analytical expression which is physically 

meaningful. 

By utilizing the property of Dirac delta function that 

and by directly applying the convolution relation to [A-4], equation 

[A-4] can be further simplified as: 

I(co)= G(oo)* H(w)= J G(w')- H(w-<o') dw' 

Changing the order of integration in the third step in the 

derivation is valid since G(u) is spatially independent. Equation [A-6] 

states that the spectrum line shape I(co) of the k-th transition can be 

readily calculated by replacing the variable w in G(w) by 60-0^(2) and 

perform the powder average to obtain the final spectrum. 

g(x )-5(x-x )dx = g(x) [A-5] 

{J G(w')- S((A>-tAi'-(»:|^)du'} do 

rA-61 
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(2). Gradient method: 

A second variation of this direct approach is much simpler in form. 

This expression relates more directly to the orientation dependent 

transition energies which we shall derive also from [A-4] by changing 

the parameters. In order to simplify the following discussion we shall 

assume G(u) being a delta function. General expression for G(co) can be 

easily incorporated after the H(w) has been derived. 

The identity relation, [A-7] shall be derived first. First 

integrating over the variable m on both side of [A-4] and applying the 

relation of Dirac delta to [A-4] yields 

H(w)d(A= ̂  jJ desine s{(<o-a^(e,<t.)}dco 

= 31^9 49 tA-7] 

This equation states that the first moment of the spectrum is 

conserved, which is independent of principal axis frame transformation 

since the spatially dependent resonance frequency is absent on the left 

hand side. Next by changing the variable of to its implicit variable 

0, «p as follows : 

dw dw 
da^Ce, <j)) = dSf d<j>= grad{(A3(0, <f))} • (d9,d<j>) 

= jgrad{a:^(0, <(>)} 1 jdr jcos^ [A-8] 

Where Ei is the angle between the vector grad(cc^) and the 

displacement vector dr= (d0,d*). When the gradient is not zero, we can 

divide grad(a^) on both side of the above equation and integrating over 
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this gives: 

Idû^lgrad{(«^(e, (|>)} |~^= f|(d9,d*) |cosC 

The left hand side of the above equation is a constant. This 

relation is finally inserted in to [A-7] which gives: 

jH(w)dw = N' ^ {J[lS{w-(A^(2)dw]- |grad{o^(2)} l"^dc^(2)3dS 

= N' I {/[ J5{w-£^(2)-|grad{c^(2)} r'^da:j^(2)]da)}d2 

= N' ^ {;|grad(a^(2)} dw}d2 
R 

= N' lgrad{(^(2)} 1^^ d2}dw 

By equating the integrands on both sides we have 

H(w) = N' Jdeisn© J"d<)> |grad{w^(8, *)}| ̂  [A-9] 

An equivalent expression of [A-9] frequently used is obtained after 

replacing sined0=-cos9 =dy which gives: 

H(w) = N' J"dy fd<j) jgrad{(A:^(y, <f>)} [A-10] 

Important physically meaning of [A-9] and [A-10] is that: the 

inverse of the amplitude of the gradient represents the contributions to 

the intensity for the individual orientation a=(G, 6) or (y,4>) at the 

frequency 2). 

The conditions when the gradient approaches zero corresponds to a 

flattening region in the c%(0, *) surface as can be seem from {A-7] that 

docj^ also approaches zero. Hence these points may corresponds to a 
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saddle points or a local optimum in the surfaces. The character of 

these points can be determined by Wronskian determinant which we will 

not discuss further. The significance of equation [A-9] or [A-10] is 

that the singularities of the spectrum can be obtained from the 

condition when grad(wk(8, 40=0 where intensity I(co) is infinity at 

. Hence combining with the character of these critical points 

the prominent feature of the spectrum can be determined even before a 

complete line shape calculation is performed. 

In deriving [A-7], [A-8], [A-9] and [A-10] we have neglected the 

broadening function G(w) by assuming that it is a delta function. For 

any other type of functions used for G(«) the final powder line shape 

will be a results of convolution of G(co) and H(oo) as was indicated in 

[A-4]. A result in applying this function is a smoothing of the 

spectrum calculated by the above equations. And in some cases the 

prominent features of the spectrum may be smeared out it is smoothed by 

a relative large homogeneous interaction or a inhomogeneous lattice 

distribution. 

Notice that the assumption that each and every inhomogeneous delta 

function is influenced by the same homogeneous broadening effect 

represented by g(t) has been made. Therefore the orientationally 

independent G(w) has also been assumed. The assumption is valid when it 

accounts for the homogeneous broadening due to the nonsecular terms of 

the dipolar Hamiltonians. It is not true when the interaction 

parameters such as the electric field gradient possess inhomogeneous 

distribution, specifically depending on the translational lattice 

variable x hence.the broadening function becomes g(x,t). The powder 
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spectrum will require further average over x, in this case the 

separation of G(w) from the average over the variable 2=(0, <|>,x) will not 

be allowed. 

In the following, we shall proceed comparing the two approaches as 

indicated in equation [A-2a] and [A-2b] from the point of numerical 

stabilities, calculation speed (cpu time ) and the efforts in 

programing. 

In practical calculation, it was point out earlier by several 

authors that the first method is the most straightforward scheme 

especially when the relation between orientation and frequency 

distribution can be expressed analytically. Usually the integration or 

summation can be replaced by evaluating an simpler function such as 

elliptical integral of the first kind for shift interaction. 

Unfortunately the analytical form does not generally available when the 

spatial dependent energy becomes more complicated such as that of the 

second order quadrupolar interaction. When function g represents 

inhomogeneous lattice distribution which is nonrandom as can be 

represented by a Gaussian function but rather a quasicontinuous 

distribution which does not posses any analytical form, the above direct 

method will be extremely hard to evaluate. Other disadvantages in using 

this approach are noted: 

First calculating the spectra according the [A-2a] or the related 

relations [A-4], [A-6], [A-9], or [A-10] the frequency as well as the 

gradient will need to be evaluated. The frequencies will then be 

truncated to give the corresponding discreet integer channel which 

causes some error. Secondly the gradient is evaluated to obtain the 



www.manaraa.com

243 

points where infinity intensity is encountered before convoluting with a 

broadening function as pointed out before 

On the other hand, the second approach according to [A-2b] or the 

related relations, [A-l] and [A-3], requires only the spatial expression 

of resonance frequencies in calculating both the absorption and the 

dispersion of the spectrum. Because multiplying a decay function g(t) 

is performed at the same time when the transient signal is calculated, 

this smooth the spectrum, and resulting the following advantages: 

(1). It does not require as large sampling points (or small dot 

matrix) as those needed in the previous approach. Usually a 4 by 4 

degree mesh is sufficient to give a smooth spectrum with negligible 

digital noise. 

(2). Since the transient is calculated first, this approach will 

not encounter an singularity problem. 

(3). In addition to generating an artificial transient decay, this 

scheme follows the same experimental data manipulation procedure, hence 

the calculation can be easily understandable and easily formulated by 

following the existing experimental routines. 

(4). Since this straight forward.integration method needs to 

calculated only a complete cycle of the transient signal. This implies 

that in the bottle neck of the calculation, only relatively small number 

of the powder averaged points in the time domain should be evaluated. 

Since the resolution is determined mainly by the number of the Fast 

fourier transform, and the cpu for the FFT is essentially negligible in 

the calculation this approach can yield better resolved spectrum with 

much less calculation cpu. 
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APPENDIX B: LIOUVILE SPACE OPERATOR 

We first define the Liouville space (L-space) operators as parallel 

to that of the Hilbert space (H-space). Ordinary Hilbert operators 

(Hamiltonians) in Quantum Mechanics that used to be expressed as 

matrices of dimensions of the complete bases are now considered as 

"state vectors" in the L-space that linear functions f(Q) in the L-space 

(which are matrices) can be expressed as linear combination of its basis 

state "vectors". In applying these operators to NMR studies, several 

definitions for the L-space basis sets have been found; for example 

multipole tensors, fictitious spin -1/2 operators, or simply 

multiplication of the angular momentum I^, ly, Ig. In the following 

section we use only the irreducible tensor operators as the complete 

basis set. 

The linear properties are parallel to that of H-space where all 

state vectors can be represented by linear combinations of the complete 

basis set. Using the notation |Q) for ket and (Q| for bra as L-space 

basis, the linear combination relations in L-space states: 

lf(Q))=E a^ 1q^) L-space 

|f(\|/)>=Z a^ iV/^> H-space 

The scalar product between two Liouville vectors is defined as: 

(A|B)=(B+|A+)=Tr{AB} [B-1] 

Where A+ is the adjoin of A. Liouville operators are then defined 

as superoperators denoted by a hat Q. The operation is defined as: 
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QlA)=l[Q,A]) [B-2a] 

(AlQ=|[QtA ]) [B-2b] 

Notice that a L-operator (a superoperator) operating on L-space 

"vectors" implies the commutation relation need to be evaluated. Due to 

the linear relation of the commutator, the superoperators are also 

linear operators. 

When the superoperator is the argument of an exponential, this 

occurs frequently in the evolution and the preparation stage of NMR 

transient experiments, the function of this operator can be evaluated by 

Taylor expansion. Invoking the definition in [B-2], we have 

e^ |B) =[1 +XÂ +27 +^XÂ)^ + ..] |B) 

=B+X[A,B]+-^A,[A,B]]+-^A,[A,[A,B]]1... [B-31 

= e^B e"^ [B-4] 

Relation [B-3] and [B-4] can be proved directly by the following: 

Let f(X)=e^B e"^ 

II = A f(X)-f(X) A= [A,f(X)l 

2 
§4= [A, |^(X)]= [A,[A,f(X)]] 

Higher order derivative can also be found iteratively from this 

procedure. We now inserting the differential terms as the coefficient 

in the expansion of f(X), it gives 
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f(X)= B+ X[A,B]+^A,[A,B]]+-^A,[A,[A,B]]1 + ... [B-5] 

When express the above L-space "vector" using Ket and Bra notation, 

we arrive at [B-3]. This prove also indicate that notation [B-2] equals 

the commutation for L-space operators is consistent with the quantum 

mechanic relations. 

Notice the different expression given in [B-3] and [B-4] for the 

exponential operator. The compact expression in [B-4] means the 

infinite expansion of [B-3] should be calculated. The importance of the 

exponential L-operators cannot be overemphasized, in studying the spin 

dynamics it is always the type of exponential operators that should be 

solved, which implies an infinite series of commutators must be 

evaluated in general. However there are several simplifications which 

can reduce the calculation or yield approximation of the solutions. 

Several important and useful relations originated from [B-3] and [B-

4] are discussed below. 

(1). It is immediately realized from [B-4] together with the prove 

that, the following relations should also exists: 

(Ble^= e~^B e^ [B-6] 

(2). When a commutator [A,B]= yB exists, where y being a complex 

constant, (e.g., for A=Io and B arbitraty). Inserting the value of the 

commutator into [B-3], we found 
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e^lE)= |e^^B)= [B-7] 

Infinite commutation now becomes a simple exponential multiplied by 

a complex constant. 

(3). When A,B commute [A,B]=0, from [B-5] or [B-7] we have 

e^(B)= e^^(B)=|B) [B-8] 

e^|A)=|A) [B-9] 

(4). By using [B-1] the scalar product of [B-4] with another L-

space "vector" |C) becomes: 

(C|e^|B)=Tr{C"^e^B e"^}=Tr{e'^C'^e^B} [B-10] 

Similar trace expression as [B-10] can be obtained by using the even 

permutation relations. 

Tr{XYZW}=Tr{WXYZ}=Tr{YZWX}=Tr{ZWXY} 

(5). The special commutation relations from (1) to (3) implies that 

[B-10] can be further simplified if [A,B]=XB or [A,C]=XC. 

(Cle^lB)= e^^ Tr{CB} [B-11] 

(6). Using definition [B-1] we may generate the following relation: 

ABC...DlH)=A[B[C...[D,S].^]] [B-12] 
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if n=even 

;n-2 
(A|B "|A)= ([A,B]1B" ̂ |IB,A])= Tr{[B^^p,A]}^ [B-13] 

(7). When operator B of [B-4] is also an exponential operator, the 

following equation can be used to facilitates the calculation. 

e^le®) = exp {B-14] 

The argument at the right of the equation is the same as [B-3], 

which allows the evaluation of [B-14] by using the inverse of [B-3] 

The prove of this relation is straightforward. 

Let X= e^|B) 

e" = l+e^|B) +le^ e^B e +1 [e^lB)]^ 

= l+e^|B)+|-e^lB^)+|-e^|B^)+ ... 

= e^|l+B+^ B^+^ B^+ ... ) 

= e- e") 

This results is found to be particularly useful when the general 

rotation of a tensor is related to the Wigner rotation matrix as shown 

in Appendix D. 
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APPENDIX C: DEFINITIONS OF THE EULER ANGLES 

Several conventions exist in choosing the so called Euler angles. 

The general displacement of a rigid body due to a rotation about a 

fixed point may be obtained by performing three rotations about two of 

the three mutually perpendicular axis field of the body. We shall 

assume a right handed frame of axes. A definition of a positive 

rotation about a given axis is the one that carries a right hand screws 

in the positive direction along that axis. For example a positive 90 

degree rotation about the Z-axis carries the X-axis into the origional 

position of the Y-axis. 

A Wigner rotation as described are to be performed in the following 

successive order. 

(1). A rotation a (0,2%) about the Z-axis. This brings the axes 

frame form initial frame S to the intermediate frame s', 

(2). A rotation g (0,%) about the Y-axis in the s' frame. A 

resulting frame of axes is symbolized by s". Notice the Y-axis in this 

rotation is usually different from the original Y-axis. 

(3). A rotation y (0,2%) about the Z-axis in the s" frame. The 

position of this axis depends on the previous rotations a, and g. The 

resulting final axes frame is denoted as s'''. 

Notice that a unique transformation can be carried out by several 

possible values of a, 3, and y. There is no 1 to 1 correspondence 

between the rotations and the parameters. 

For simplifying the discussion we represent a rotation of angle S 

about axis C being D^(5) and for successive rotation operations they are 

arranged from right to left. 
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The above Wigner rotation is then written as 

D(a,e,Y) = Dgn(Y)Dy,(g)Dg(a) [C-l] 

In the above description of the general Wigner rotation, the angels 

Y,3 have been defined relative to the axes frame of the moving body in 

frame s" and s' respectively. In many applications it is convenient to 

refer these rotation angles to the original rigid frame of axes S. 

Since rotation Dy'(g) is equivalent to DgC a)Dy( g)D2(-a), also the 

rotation Dgi'CY) is equivalent to Dy,(g)Dz'(Y)Dy,(-g), and hence to 

D2(a)Dy(P)D2(Y)Dy(-g)D2(-a) we may therefore express the above rotation 

with another equivalent form, e.g., 

D(a,g,Y) = D2,,(Y)Dy,(g)Dz(A) = Dz(A)Dy(g)Dz(Y) [C-2] 

This relation states that the Wigner rotation defined above is 

equivalent to the following rotation carried out in successive order: 

(a) a rotation y about the Z axis; (b) a rotation g about the Y axis; 

and (c) a rotation a about the Z axis. Notice that the angels a, g, y 

are now relative to the original fixed axes frame S. 

Both notations are used frequently in studying the spin dynamics as 

well as the interaction frame transformation in the line shape 

calculations. 
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APPENDIX D: WIGNER ROTATION MATRIX ELEMENTS FOR k=l, 3/2 AND 2 

The Wigner rotation matrix can be easily constructed using the 

following relation: 

=  e x p C i m ' ( g )  e x p ( i m a )  

where the Euler angles ( ot, g, r) have been defined in Appendix C. In the 

following tables, the matrix elements for d^f^k) (g) are tabulated in 

Table I; k= 1, Table II; k=3/2, and Table III; k=2. Notations X=cosg, 

Y=sinP are used. 

Table I 

Table of elements of 

2 1 0 -1 -2 

2 (1?)̂  ^ Y(l+X) ^ Y(X-l) 

1 j^ï(X+l) |<2X-1)(X+1) •Ij XY |<2X+1)(1-X) ̂  Y(X-l) 

0 4 Y' -^1 XY 
1 2 • 
J (3X^-1) XY 

-1 Y Y(X-l) |<2X+1)(1-X) |<2X-1)(X+1) Y Y(X+1) 

-2 J Y(X-l) 4" Y(X+1) 
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Table II 

Table of elements 

mX'^ 
3/2 1/2 -1/2 -3/2 

3/2 ^3X^Y ^3XY^ Y^ 

1/2 -^3X^Y X(3X^ -2) -Y(3Y^-2) ^3XY^ 

-1/2 ^3X^Y Y(3Y^ -2) X(3X^-2) ^3X^Y 

-3/2 -Y^ 43X3^ -^3X^Y X^ 

Table III 

Table of elements 

1 0 -1 

1 ^1+ K) T2^ Y (1-x) 

0 X 

-1 -X) 
71^ J (1+X) 
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APPENDIX E; SPHERICAL TENSOR REPRESENTATION OF SPIN OPERATORS 

shift 

J-coupling 

Spin-J 

00 '10 '1+1 

n'-: l<ioWo> 

'à I'-" I< 

Shift 

DiDoler 
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4vo 

2+1 

^ 2 

2+2 

-rf (3I.S„-I-S) 
^0 u u 

+ i- (InS +I,Sn) 
Z. V T -r V f h ' - :  

i (3ioV'-s' : J ! W±^o' I I.s. 

- 1 

it ^ 2 2 Ii/+ 

i \  I  V±  
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APPENDIX F: LIST OF IRREDUCIBLE COMPONENTS R^ UNDER 

SINGLE AND DOUBLE INTERACTION FRAME TRANSFORMATION 

Interaction frame transformation for the second rank irreducible 

components are calculated under single and double transformation. 

The irreducible components expressed in its principal axis system are 

defined as: 

^2+2 

^2±1 

^20 

X 1 , X X , . X 
"̂ 22 2 ̂ "xx "Vy '̂'̂ xy = Y 

>13/2 (^22-?^= ̂ 3/2 

Where anisotropy 5=o^zz-%' asymmetry T>=(Oyy-o^x)/<^zz~°^0' 

isotropic value ffo= ( '^xx'^°yy''^zz)^3. The three principal values of the 

interaction X are ^xx'°yy'®'zz* Notice we have completely neglected the 

antisymmetric elements and hence P2+i =0 is assumed for all 

interactions. 

(A) Single interaction frame transformation is as follows: 

Rn(*,8,+) = Pg e^"*[e^^-d^^(8) +e"^^*d_2^(8)i + PQ e^'^^^CS) [F-l] 

(1). R^^*,e,4)= Pg sin^ecos2<|' + PQ P2(cose) 

(2). R^(^^0, 4) = e^^[ pg (cosGBin6cos2*+isinesin$)- Pq(^|-cos6sin0) ] 

2 
(3). (\i/, 6, 9) = ^c^s2$+icos8sin2*)+ Pq s|-sin^G ] 
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(B) Double interaction frame transformation is defined as: 

R2(«,6,r.9,« - Ç 

 ̂ "0 I "().(« lF-2] 

(1) .  RQCO, g, Y, 0, <l>) = 

P2 4^ { P2(cos9)sin^ecos2a 

+2cos6sin0(cosgsingcos2ocos2-singsin2osin2) 

2 
+sin^0( ^cos2o!cos2g-singsin2osin2g)} 

2 
+ Pq{ P2(cos0)•P2(cosg) - 3cos0sin0cosgsingcos2 

+ ^ cos^0sin^gcos22 } 

m=0 

m=±l 

m=±2 

m=0,+1 

m=+2 

(2). R. ( a, g. Y, 0, = 

2 3 2 
Pg { ̂  cos0sinGsin gcos2a 

2 1 
+2(cos 9-^)(cosgsingcos2ocos2-singsin2asin2) 

m=0 

- i cos 0( cos gsin gcos2 ces i n S2+S in gs in2 ocos 2) m=+l 

+cos0Gine( ^cos2c(COs2g-singsin2osin2g)} 

-isin9(^^^2^ ^ cos2ocos22-singsin2osin22)} m=+2 
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+ Pq{ cos 6s in 8" PgC cos g) m=0 

2  
cosgsing [cos29cos2+icos0sin2] m=±l 

+^|- sin^g [cos0sin0cos22-isin6sin22] } ra=±2 

(3). R2(a,g,Y,8,*) = 

P2 { sin^Qsin^gcos2a m=0 

-cos9sin0(cosgsingcos2oEOs5-singsin2csin2) 

isine(cosgsingcos2osin2-singsin2o(coss) m=±l 

1+cos 9 ̂ 1+cos g cQs2cxcos22-singsin2osin22) 

2 
cose(^^^2^ ^ cos2osin22+singsin2c(cos22)} m=+2 

+ Pq { ̂1" sin^G-P^Ccosg) m=0 

+4^ cosgsing(cosesin0cos2-isin9sin2) m=+l 

+4^ sin^g( ^^^2^ ^ cos22-icosÔsin22) } m=±2 
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