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PURPOSES AND GENERAL INTRODUCTION

The purpose of the current work is to extended the investigation of
the line shape studies of quadrupole nuclei under (a) a combination of
internal Hamiltonians, (b) rapid variable-angle sample spinning and (c)
coherent or random nuclear dynamic motion. These studies exhibit some
novel results which either provide a systematic approach to the analysis
of the quadrupole NMR line shape or to the recognition of new
qualitative NMR line shape features.

Strong quadrupole nuclei, which can not be studied by conventional
transient techniques in conventional NMR, are now studied through: (z)
indirectly observing the heteronuclear dipolar interaction reflected in
the nearby spin 1/2 nucleus NMR spectra and (b) directly observing the
singularities in the quadrupole (weak Zeeman) regime. These results
will provide some valuable approaches to the studies of strong
quadrupole nuclei.

The structure of the thesis is briefly described as follows:

Part I: The studies of the NMR spectra line shape under the
influence of the internal Hamiltonians are based upon the knowledge of
the spatial dependent transition frequencies of the combined
Hamiltonians. Hence these spatial relations should be first derive
before the NMR powder line shape can be calculated. In deriving these
relations, the concept of the "Effective Hamiltonians" are introduced in
the first part of the thesis. To demonstrate the accuracy of this line
shape theory, a static system is examined by the field dependence of the
characteristic frequency. The mutual orientation of the interaction

tensor determined are compared with that obtained from single crystal.
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Part IT: The theory obtained from PART I is applied to the spinning
system of Cs exchanged mordenite. The electric field gradient and the
local electronic environment of the 133cs nucleus is determined by
monitoring the line shape of the second order quadrupole central
transition.

Part III: The theory is further extended from a static system to a
dynamic system such as 23Na in NaMo,0¢ where the quadrupole nucleus of
interest exhibits a multisite discrete jumping motion. Through the
studies of the dynamic line shape of the second order central
transition, the incommensura“e structural transition, and the molecular
dynamics can be distinguished. The position of sodium nuclei can also
be determined from the dynamic line shape studies.

Part IV demonstrates that NMR spectra of spinning samples for spin-
half nuclei in the presence of dipolar coupling to quadrupolar
interaction can be used as an indirect probe for the nearby quadrupolar
nucleus. This study is applied to 4 in ZrCleHy system where the
internuclear distance between the spin-half hydrogen nucleus and the
quadrupole nuclei, Cl can be determined. The presence of the phase
ZrgClyoH is detected by an unpaired electron density as inferred from
the proton shift following Curie-Weiss law. From these line shape

studies, the proton position can be determined.



PART I. FIELD DEPENDENCE OF NMR STATIC POWDER LINE SHAPE:
STUDIES OF THE MUTUAL ORIENTATION OF INTERACTION
TENSORS FROM THE FIELD DEPENDENCE OF THE CRITICAL

FREQUENCIES



Field dependence of NMR static powder line shape:
studies of the mutual orientation of interaction tensors

from the field dependence of the critical frequencies
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ABSTRACT

A procedure for determining the interaction tensor orientations and
the interaction parameters for mutually oriented electric field gradient
(e.f.g.) or dipolar and shielding tensors has been developed based upon
the magnetic field dependence of the critical frequencies from the
polycrystalline NMR spectrum. Analytical expressions for the field
dependent critical frequencies have been determined for special
orientations when the shift principal Z axis lies on the XZ, YZ or XY
plane of the e.f.g. (or dipolar) tensor. The analytical expressions
provide a convenient pattern recognition for determining the approximate
tenscrial orientation and the intzraction parameters. For general
orientations, a numerical procedure has been developed to determine
these parameters by iteratively minimizing the squares of the
differences of the calculated and the experimental critical frequencies.
Higher order perturbation terms can be incorporated in the present
treatment.

The method is demonstrated by variable field static proton spectra
of tri-chloroacetic acid at three different fields (1.3T, 2.3T, 5.2T).
The near-orthogonal orientation between the dipolar and shielding
tensors and the interaction parameters obtained from this approach are

consistent with those obtained previously from single crystal studies.



INTRODUCTION

NMR powder spectra associated with a single inhomogeneous
interaction under static conditions, sample spinning, or under the
influence of molecular motion have been studied.l In general, however,
there will exist two or more internal interactions affecting the energy
levels of a nucleus in a solid. The spectra are therefore different
from those predicted by a single interaction. A standard approach in
studying the interactions under the circumstances is to selectively
average, Or suppress one or more interactions by transient techniques in
NMRZ2:3 yhich allow the study of the interaction unaffected. These
techniques include Magic angle sample spinning (MAS)Z"S’6 applied to
suppress the interactions possessing spatial dependence (3coszeu1);
multi-pulse homonuclear decoupling experiments (MP)2:3+7 are employed to
suppress thg BIZIZ—I2 spin dependent interactions. Numerous
applications have been réported applying these approaches.8 However
there are some limitations and drawbacks of these applications:

(1). The relative orientations of the principal axis of the
component interaction tensors is completely lost upon applying the MP or
MAS techniques. The orientation relation of interactions in solids are
closely related to the molecular or crystal structure and reflect
indirectly the electronic and bonding structure about the nucleus.ls3

(2). When a system experiences a nonnegligible dipolar interaction,
under MAS the intensities of the rotational side bands are modulated not
only by the shift anisotropy and shift asymmetry, but also by the
dipolar coupling constant. Extracting the interaction parameters under

these conditions, requires extensive modification of the formulae



proposed by Hertzfield and Berger9 vhere only a single shift interaction
is considered.

(3). Due to finit rf power, the condition Hy ¢>> Hj limits the
application of the MP techniques to systems of relatively narrow
inhomogeneous line widths. For strongly dipolar coupled systems or
those experiencing a Knight shift, the spectrum is subject to
distortions upon the application of M.P. techniques. When the nuclear
motion frequency is of the order of the sampling rate (= 50kHz), this
technique becomes useless.

(4). Interactions that do not satisfy the special spatial
dependence required by MAS can only be suppressed but not eliminated.
The resulting spectra are not independent of the eliminated or
suppressed interaction. For example the central transition of the
second order quadrupolar interaction exhibits a residual line shape also
dependent upon the size and the orientation of the shift interaction,lO
although the shift interaction has nominally been eliminated under magic
angle spinning.

To avoid the artifacts and to regain the lost information associated
with the above factors, the most direct and simplest approach from the
experimental point of view is to study the static spectrum of a single
crystal.11 For systems where growing sufficiently large single crystals
for NMR studies is not possible, the information can in principle be
extracted from the one-dimensional (1-D) NMR powder spectra. The caveat
is that the resulting spectrum can be calculated from the interaction

parameters and the three relative orientation angles.



Taylor et al. have studied the static powder line shape of both the
central transitions of half integer quadrupolar nuclei and the satellite
transition of nuclei with spin greater then 1/2 in the presence of a
nonnegligible shift interaction.12:13 To obtain the interaction
parameters, the powder spectrum governed by tﬁe internal interactions is
iteratively fitted using a least squares routine. A large number of
calculations and a spectrum of good signal-to-noise ratio are required.
This method has also been applied to the analysis of ESR spectra to
determine the orientation between the g tensor and the internal
Hamiltonians,13 since the spatial orientation of the g tensor can be
described in. the same manner as the shift (chemical of Knight) tensor.
Considering the many parameters involved and the insensitivity of the
NMR spectra to the tensor orientation, this analysis may not be fruitful
even when spectra of high signal-to-noise ratios are available.

To provide more experimental data so as to yield unambiguous
results, two approaches can be taken. The first is to use two
dimensional (2-D) resolved experiments, and the second is a variable
field experiment.

The correlation of tensorial interactions between heteronuclear
dipolar coupling and chemical shifts has been studied by Linder et a1.l4
The unique pattern of the ridges shown in the 2-D spectra served as an
identification of the mutual orientation between the dipolar and the
shift interactions. From the simulation of the chemical shift resolved
dipolar powder spectra in the 2-D NMR, the parameters of the individual

interactions as well as the orientations can be determined.



Torgeson et al.13 and Jones et al.l6 have studied the field
dependence of the singularities for both the central transition vs.
Knight shift and the satellite transition vs. Knight shift for half
integer quadrupole nuclei. These studies show that determination of the
interaction parameters can be accurately determined by fitting of the
field dependence of the critical frequencies, instead of using a large
number of iterative calculations of the powder spectrum.

The approaches by Creel et al.17 and by Bauger et al.18 however,
have assumed that the principal axes of the electric field gradient
(e.f.g.) tensor and the shielding tensor are coincident. This
assumption, although reducing three of the eight parameters required to
describe the spectrum which are essential in both calculating the static
powder spectrum and the analysis of the critical frequencies, is in
general not correct. The absence of appropriate pulse techniques to
resolve the shift from the quadrupolar interaction in the two
dimensional spectrum makes it impossible to perform the 2-D analysis
proposed by Linder et al. for quadrupole nuclei. 1In this report, the
idea proposed by Barnes of mapping the critical frequencies with the
magnetic fields is amplified. The general case where the interaction
tensors are not coincident is considered. The influence of tensor
orientations upon the static powder spectrum and the most prominent
features of the spectrum for combined quadrupolar and shift interactions
are discussed. Finally it is shown that the results are consistent with
previous studies by Creel and Bauger in which the Euler angles (e,8,7Y)

between the interactions considered are zero.



EFFECTIVE HAMILTONIANS AND THE TRANSIENT DECAY '

Two purposes are served in this section. The first is to derive the
effective Bamiltonian corresponding to first and second order
perturbations. Secondly the results are applied to demonstrate that the
povder averaged transient decay can be derived directly from the

Liouville-Von Newman equation.

Using superoperator notation! the Liouville-Von Newman equation is:

|L(t))= —i(éz+ék)|p(t)) L-N equation

here the superoperator is defined as H = [H, ]

The general solution of the density matrix governed by a time

independent Hamiltonian is

ot o
lo(t))= exp™ T (Bz#B)AT 1,00, [1]

Using irreducible spherical tensor operator formalism, H) is given

ij A ijsA Lids A
Y = %mlz-kc DR Teom (2]

The subscript X represents the different interactions with A=Z for
Zeeman, X=D for dipolar interaction, X=C for chemical shift interaction,
2=Q for quadrupolar interaction aud >=J for scalar j coupling. The
indices i, j represent a single spin interaction if i=j and spin-spin
interactions if i#j.

The scalar coefficient CA depends only on the fundamental

interaction constants and the properties of the nuclear ground state.



Tk% are the irreducible tensor spin operator for interaction A.
Details of these tensors can be found in Mehring1 and Haeberlen.3

Rk% are the irreducible tensor spatial operators. Transformation of
these operators under rotations in both physical (spatial) or spin space
have been given by Haeberlen,3 and Maricq and Waugh.19

For simplicity in the following discussion, Hy) is treated as a
single internal Hamiltonian. With the appearance of two or more
interactions, as discussed later, H) represents the sum of all the
Hamiltonians of the nuclear spin interactions in solids.

Vhen the Zeeman Hamiltonian is much larger than the internal
Hamiltonian(s), it is legitimate to retain only the first few terms of
the series implied by [1] due to the fast convergence of the series.
Using the factoring theorem for two time independent Hamiltonians, the

density matrix becomes:

5%, (t)der -1yt

|p(t)) = Texp~ Xp [0€0)) (3]

~ iéZT
Vhere H,(T) = exp L3 [4]

and T represents the well known Dysoﬁ time ordering operator.7 The

first term in [3] is conveniently evaluated by the Magnus expansion

which becomes:

—ifé B (D)dT -t
Texp = exp € [5]
and E_ie = Vg\o) + V(xl)-&- V§\2)+ .o
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The averaged Hamiltonian Vkﬂo) and the next two terms are well known

v - gle By (n)dt (6]
Vg\l) = %{U fgedt’ Jg'{fi)\(t'), ﬁ)\(t")] dt" (71
v < TR rfedr I5 den 5 (H, (e, [y (07 By (e )]

""[ﬁk(t"’)’[ﬁ)\(t")y;lx(t')]]}dt"' [8]

vhere t., the cycle time, equals one Larmor period 2m/uy. For shift and
dipolar interactions which are much smaller then the Zeeman term, the
averaged term V&Q) already gives accurate results. The second term V&?)
corresponds to a second order perturbation and is required only for the
central transition of the half integer quadrupolar spin.

Before evaluating the truncated Hamiltonian, it is necessary to

evaluate the internal Hamiltonian, ﬁx(t) expressed in the Zeeman

rotating frame.
o _ -iugt-Ig A 1M k .k iugt-Ip
Hy(t) = exp (5, M DR T exp

A m ok -iuptl k
=m§_kc (-DT RS exp 100 |1

=m§_kcx(—l)m R%m exp—im“DtITﬁ) [91

In the current case, we consider the nucleus to be in the rigid

lattice of a static sample. Therefore, R% is considered to be time-
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independent. The average Hamiltonian VX(O) after integration over one

Larmor period as from [6] and [9] becomes:
k=0,1,2 only [10]

Similar to the averaged Hamiltonian, the next term in the Magnus

expansion for a second rank (k=2) tensor which appears in the dipolar

and quadrupolar interactions can be calculated. The result is

1 % a2 Lt m,o w2 o2
V)\ = z”.[ (C ) IOC dt IO r%m’(—l) (_1) R_er_m
o Ti" Ti Jem i @t g

(11}

After evaluating the commutators and the double integral according to

[7], this term is written specifically for the quadrupolar interaction:

a0

- S

2 2 iR2 2 ar-sri 1 - B2 2 (2r?-ardont
= 9 Gy RS I Ry 22171

6 2 2 -2 2,2
> Ry [RD(4Ig-4I¢1)I - R} (4Ig+4I+1)I_]

+

+ 46 ROBRA(1+)I° + B2, (1,-DT7] ) [12]

The first two terms yield identical results to that given by
Volkof20 and later by Cohen and Reif2l derived using the second order
perturbation theory for the quadrupolar interaction.

The rest of the

terms although nonsecular have not been averaged to zero according to
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the averaged Hamiltonian treatment. To evaluate the density matrix
incorporating the nonsecular Hamiltonian terms requires diagonalization
of [12]. The influences of the nonsecular terms upon the powder spectra
are however minor2:19 and are neglected in order to simplify the
calculations.

Higher order terms in the Magnus expansion are harder to evaluate.
In the high field or in the weak quadrupole limit, the first two terms
are sufficiently accurate. Under this condition the density matrix, [3]
can be rewritten according to [5] as

lo(t))= exp Het|oc0)) [13]

or can be expressed similar to the L-N equation as follows:

a

[a(t))= BZ[p(t))  with condition [6(0))=]e(0)) [14]

and 8 = v{®. vV [15]

At this point we want to emphasize that the spatial dependence
implied in R%, is directly related to the above quantities; the density
matrix, the effective Hamiltonian, aﬁd the averaged Hamiltonian. The
narameter, @=(©, ¢) denotes this spatial dependence, representing the
orientation of the principal axes frame of the internal interactions
with respect to the external field.

To calculate the spectrum, the expectation value of a transverse
component of the angular momentum in the time domain is first calculated

from the stationary state energy levels of an ensemble of nuclei exposed
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to one or more internal interactions leading to inhomogeneous
broadening. The powder spectrum is then obtained from the Fourier
transform c¢f the appropriately apodized time decay.

The time decay of the magnetization associated with the single
crystal orientation ®, with phase detection along y can be determined

once the density matrix is calculated from [13].
<L, 9> = (I ]e(t, ) [16]

Recall that all terms in [16] are matrixes evaluated in the basis,
lm>, vhich makes the effective internal Hamiltonian Hg diagonal. These
are basically the Zeeman states if the off diagonal terms appearing in
the V(1) is neglected. By the definition of the trace and noting that

the propagator U=exp{-iF,t} is also diagonal, the terms in [16] are

evaluated as
I (t, > = U..I U ‘11
g D2 = 50 Uity % Ty g

1

— 4

=.Z U..U T . I ..
J?k 3 kk Ty,jk7y,Kj

. 2 .
=j§k |<3|Iy|k>| exp{—l[uﬁ(Q)-uk(Q)]t} [17]

The Upn's are the diagonal matrix elements of the propagator exp{-iFgt},
evaluated within the Zeeman basis set |m>. Note that the stationary

state eigen frequency is given by

4 (= k[T (2 k> = <k |V s xv{lo) k> [18]
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Since the transition probability |<j|Iy|k>|2 is nonzero only when
|j—k|=1, the double summation over j and k in [17] is reduced to a

single summation over each transition k. Equation [17] then becomes:
<Iy(t,9)> = % Pkexp{-lAuk(Q)} [19]

Where the k-th single quantum transition frequency for (k - j) equals
8w = wj - W vith the index subject to the constraint that j=k-1. The
corresponding transition probability is py= |<j|Iy|k>|2, which may be
evaluated directly from the eigen functions of the problem at hand. For
example, if the internal Hamiltonians are acting on a spin 1/2 system,
all transition probabilities are unity. If the internal Hamiltonian is
acting on a quadrupolar nucleus of spin I, the transition probabilities
will depend upon the final state of the z component k-1, and calculated
using the result that |<k—1|Iy|k>|2 is proportional to I(I+1)-k(k-1).
We introduce a relaxation function, g(t) = exp{-t/T9y} which accounts
for the incoherent transient processes originating from the nonsecular

glected previously., Then

. -t
<Iy(t,9)> = % Pkexp{-1Auk(Q)}exp(-T;k) [20]
To obtain the FID of the inhomogeneously broadened lines, a
superposition of all of the above oscillations for all possible values
of @, with individual decays given by the same relaxation function
exp—{t/Tzeff}, is made. This superposition is made by integrating

<Iy(t,Q)> over all space @, leading to the powder averaged transient
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signal;
<1y(t,sz)‘> = 7 I [ sinede d¢-Pkexp{-iAuk(9)}exp(—,}—t) [21]
Q 2k

Thus the only information necessary in calculation of the spectrum
from the averaged transient decay are the stationary state eigen-
energies w.(Q), or the transition frequencies 4w () as a function of
orientation parameter Q = (8, ¢). As previously stated in [18] these
can be directly evaluated from the related first two terms in the Magnus
expansion, [10] and [12].

The NMR spectra can be immediately calculated by the inverse Fourier
transform of [21]. This procedure of line shape calculation is
different from that generally used by summing a Lorentzian or Gaussian
broadened stick spectrum or.by other direct methods. In Appendix A, the
identity between all these methods are demonstrated and the advantages
of the current scheme are discussed.

0f particularly interest in the current study is that when more than
a single interaction is present, transition energies Ou,(R) are the
differences in energy states of the system associated with any sum of
the internal interactions leading to inhomogeneous broadening. Examples
are: (a) shielding plus second order quadrupole; (b) shielding plus two
body dipole; or (c) a sum of shielding, second order quadrupole and two
body dipole. The parameter ® in the multi-interaction case is subject
to an important constraint that the individual interaction tensors
orients independently and maintain constant mutual orientations within
molecular frame or within unit lattice of a solid. As a result, the

eigen-energies or the transition frequencies for a micro-crystallite
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orientation; @ is not a simple sum of the individual spatially dependent

energies or transition frequencies written as

NCERTACE

but rather this should be

42 = § o2 [22]

with angles QA subject to a fixed mutual orientations between all
internal interactions. This can be achieved by expressing the spatially

dependent transition frequencies according to a "referenced" frame (vide

infra).
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ORTENTATION DEPENDENT TRANSITION FREQUENCIES

As mentioned in [21], the spatially dependent transition frequencies
are the only information required to calculate the NMR line shape. 1In
this section we wish to obtain these spatially dependent relations for
those fundamental interactions involved in the later discussions. The
procedure to obtain these expressions is briefly discussed.

First the effective Hamiltonian in [15] is determired for the
individual interactions. In the current study, only the averaged term
V&p) is retained for the dipolar and shift interactions. This
truncation gives identical results to a first order perturbation. For
integer spin nuclei, and the satellite transitions (k#1/2) of half
integer quadrupole nuclei, the effect of higher order terms other then
the averaged Hamiltonian are also neglected. We consider the V&}) term
only for the central transition of the quadrupole nuclei, which is the
major nonzero term. This truncation is equivalent to a second order

perturbation treatment when all off diagonal terms in [12] are

nacloentoad
JISHEE AR R e .

Second the irreducible tensor components R%(e,¢) which yield the
spatial dependence of the Hamiltonians is determined. A single
interaction frame iransformation that relates the principal axis (PAS)
frame to the laboratory frame is performed according to the VWigner

rotation3:22 as follows:

2 . (2) . i ¢ .(2) N
Ry = %’Dm',m(o’e’¢) Pom’ = %’ N dm'm<e) Pom/ (23]

The Wigner rotation matrices and the definition of the Euler angles
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have been described.ls3s9 Edmonds'22 definition, where the reduced
rotation matrices dm,’m(B) are related to the Jacobian polynomialsl’22
is used. The irreducible spherical components of the shielding

interaction in its principal axis system are:23

A X 1 ( AN ye i X 1 XSX

P2+2 = P22 = 7 Vi Tyylt 1%y = 3 n

A AL A

92_4_-1 = (sz +1 Gyz) = 0 [24]

A A A
oo = 372 (o‘zz—oo)= 3372 8

The anisotropy &=o0,,-0y, asymmetry n=(°yy‘°kx)/°zz‘°0’ and isotropic
value op= (°kx+°yy+°zz)/31 are obtained from oyy, Oyys Ozz3 the three
principal values of the interaction tensor. Notice that the
antisymmetric elements of the interaction tensor are completely
ﬁeglected. This approximation is not necessarily valid for heavy

nuclei.24+23 yritten specifically for the case of m=0, [23] yields
2 _ 4 (2) AN 2i4.(2) -21¢.(2)
Ro(ey $)= d0,0<07 6, ¢) 920+922[e d20 (©)+e d_zo(e)] [25}

Finally, the spatially dependent eigen-energies and the transition
frequencies according to [18] are determined for the effective
Hamiltonians determined previously.

In the presence of more than one interactions, the procedure
described previously is repeated for individual interactions. However,
it is necessary to take into account the fixed mutual orientations

between these tensors as mentioned in [22]. The most direct method in
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correlating the orientations is by performing an interaction frame
transformation of the irreducible tensor components R% for each
interactions with respect to a reference frame which is conveniently
chosen to be the PAS of one of the interaction tensors and is
characterized by Buler angles («, 8, Y)A. The relation of the Euler
angle (0, 6, ¢) and the orientations are depicted in Fig. 1.

The spatial components are now generated by using:

2 a (2) (2) A
Rm(91 ¢)- l%’ Dm,,m(oi el ¢)n21:n.Dm"’m,(a9 Bi Y)pzmn [26]

which is written particularly for the case m=0 ;

2)

2 imé,(
Ro =Ze dm0

z 0 %'eimrya;?;(ﬁ) eimoc A (271

Pom’

In the cases studied, »=C, Q or D.

This double frame transformation performed for an electric field
gradient (e.f.g) tensor, i.e., X0, gives a complicated spatial
dependence of the second order gquadrupolar interaction (involving
evaluation of R% and RE) and makes it difficult when one proceeds to
evaluate the critical frequencies (vide infra). To simplify the
derivation and the calculation we express the transition frequencies of
the shift interaction in the principal axes frame of the e.f.g. or the
dipolar PAS frame, knowing that the mutual oriemtations, («, B, ¥)
between these two tensors are characteristic of the nuclear electronic
environment and are independent of crystal orientation.

The spatially dependent relations of the shift, dipole, and

quadrupole interactions governed by first order perturbation theory will
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nov be derived. For a first order perturbation, it is found that

0) N2 .2 .c0.0
v c"RO T2 +CROTO (28]

The second term is the isotropic shift term, only appearing in the
shift interaction since other interaction tensors have zero trace. The

first order Hamiltonians after a single frame transformation become:

B,(6, )= ch 8)‘[P2(cose)+ %—n*sin e-cos2¢]Té [29]

The single quantum spatially dependent transition frequency for the

individual interaction is then
2n A )N
0,(8,9) = = (<k|H] k> ~<k-1|H]|k-1>} | [30]

For the shift interaction, the single quantum transition frequencies

are equal for all all |k> » |k-1> transitionms.

©.(8,8) = wo,-us8[ Py(cos®) + I sin’®-cos2¢] [31]

For the first order quadrupolar interaction, the spatial dependence
cf the transition frequencies is identical to that of the shift
interaction.

W 5 (e (cose)+nﬁ~ sin®6cos2 6] [32]

qd ~ q "2 2

wvhere & = w (2k-1)
q q

The constant Gy is defined individually for interactions due to
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e.f.g. and two body dipolar coupling.

2 Y. Y
_ 3e"qQ _ 3 _1is 2
@ = FI(2-D)h “a=773 B [33]

The factor 2k-1 originates from the fundamental quadrature on the
second rank zero order tensor, 3I%-I2 of the spin part, with k being the
final state quantum number of the single quantum transitions. Equation
[32] implies: (a) the central transition (k=1/2) is not influenced by
the first order perturbation; and (b) for each of the 2I transitions of.
spin I nuclei, .there corresponds another transition that gives the same
resonance frequency but with inverse sign. This predicts that under the
first order perturbation, the quadrupolar or dipolar spectrum should be
symmetric about the center of mass for either powder or single crystal.

For the first order dipolar (homonuclear or heteronuclear)
interaction, the effective Hamiltonians differ only in the interaction
constants. The spatial dependence of the transition frequency is
identical to [32]. However due to the axial symmetry of the dipole
interaction, only the Pj(cos®) term remains.

In the above equations, the sign of the term cos2¢ can be inverted
depending upon the definition of the Euler angles without affecting the
results. The positive sign which corresponds to the right hand
convention in the Wigner rotation will be used.

Second order corrections are only necessary for the (1/2- -1/2)
central transition of half integer quadrupolar nuclei since the averaged

Hamiltonian, V(0) is zero for the quadrupole interaction. The second



22

Magnus term, v(1) nust be evaluated. The effective Hamiltonian for the

quadrupolar interaction when neglecting the nonsecular term in [12] can

be written as:

2
(w)
(1) q’ . 242,,:2 .2 2,2,,:2 52
Vd = 7o {[ry["(21 -2I-1)1, + Ry [T(417-81-1) 1}
Ve need to calculate both R% and R% after a single transformation
according to [23]. After inserting these expressions with final state
k=1/2 for the central transition, the spatial dependence of the second

order quadrupole interaction, uhéz) are evaluated as follows:

(2) -R
W og = ——ZS{ A(¢)cos 0 + B(¢)cos 8+ C(d)] [34]
where

R = ah2[4-I(I+l)—3]

27

A(d)= - i % n cos2¢ - %— n2c0522¢

2
B(¢)= —%-- D; +2Nn cos2¢ + %~'h2C0522¢
2
C($)= -—% + l;— + gcos2¢ - —g cos®26 [35]

This result is consistent with that given by Bauger et al.lg and
with those proposed previously.26’27

As mentioned previously, the constant spatial relation correlation
between shielding and e.f.g. or dipole tensors is described by a double
frame transformation of the shift tensor into the e.f.g. principal axis
frame. Since only the first order effect is considered, the spatial

dependence is conveniently obtained by evaluating only the R8(6,¢) term.
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According to [27] we obtain:

2

RO = pgo {Pz(cose)-Pz(cosﬁ)

2

+%{sin G-sinZB-c052xesin26-sin28°cosx]}

2
1+cgs 8 cos2ar cos2X- cosBrsin2earsin2X]

N pgz% {sin®e -
-2¢0s0+sin® sinpB-[cosB cos2a cosX-sin2arsinX]
+p2(cose)-sin28-cos2a } [36]

wvhere X=v+¢. The single quantum transition frequency is evaluated from

[28] and [30] for the shift interaction. This gives,

2n 0 0
0, (8,9) = Fi<a Ve, ) [> ~-1]v{ (6, ) [n-15)
= CsO+Cslcosx +Sslsinx +Cszc082x+ SszsinZX [37]
vith

Cso= S-Pz(cose)[ Pz(coss)+§ sinZB cos2c}

Cs

0
(2]

'sinZG[Z%-sin25+ g-sins-cosB-COSZa]

Ss,= 8-sin26[-

)y

sinf-sinZe}-

2
Cs,= &+sin’0[-3sin’p- Y2 Bosrey)

Ssz_ S-Sinze[- g cosfsin2q]

This expression resembles to the spatial dependent transition
frequencies of a shift interaction under variable-angle sample

spinning,9’19’28 except that the definition of the Euler angles are
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different. This expression can be written in more concise form when

combining the cosine and the sine terms of the same X angle;

O, o COPz(cose)+ ClsinZGCos(X+?i)+CZSin eCOSZ(ZX+?é) [38]

The new coefficients are

Cy= 8[P,(cosB)+ -zﬁsinzscosza]

0
c,- gsinB{[(nc052a—3)cosB]2+(nsinZoc)z}l/z [39]
C2= g{[ %-Sin26+§c052a(1+c0526)]2+(ncosﬁsin2o92}1/2

The effective angles ¥; and ¥, are defined as:

. nsinla
Tan¥) = os2a3)cosB
[40]
Tany¥, - Zhganou::osB -
3sin” B+ncos2 o 1+cos” R)

Combining ¥j, ¥y with X and ZX and denoting these two angles by % and

Qy, expression [38] is further simplified;

. . 2
W, o= COPZ(cose)+Clsln2€Cos(91)+0251n eCos(QZ) [41]
with
Ql= ‘Y1+X =‘{’1+Y+¢ 92= ‘Y2+2X =‘Y2+2(Y+¢:)

Expression [41] has been checked in three ways: (a) when inserting
zero for the value of Euler angles «, B, vy in the spatial orientation

expression, [41] automatically reduces to [31]; (b) This expression
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yields the same static powder spectrum after averaging over © , ¢; as
that calculated from [31] for arbitrary «, B, vy values; and (c) the
center of mass obtained from [41] equals that obtained from [31], which
is op. These results are physically meaningful since when the system is
composed of only the shift interaction, the powder average over the
random distribution of the sample should be independent of any principal
axis frame transformation.

The separation of the ©, ¢ term from the constant angle «, B, and ¥y
facilitates the calculation of the critical frequencies and the
evaluation of the analytical expression of the singularities and
shoulders. One should also be careful in assigning the angles ¥; and ¥p
during the calculation. These angles depend on the sign of the tangent
values in [40]. In the case when the denominator of [40] equals zero
the angle will not necessarily be w/2. Vhen the shift term is axially
symmetric, i.e., rpO,lboth angles ¥ and Y must be zero. Finally ¥

equals to zero implies that ¥, must be zero.
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FIELD DEPENDENT CRITICAL FREQUENCIES
The transition frequency governed by the shift interaction plus
either the first order or the second order quadrupolar interaction is a

simple sum of the spatially dependent transition frequencies of the two

individual interactions. We write:

(1) (D

W 2w W for satellite transitions [42a]
cs qd

a§2)= W+ 052) for central transitions {42b]
cs qd

The shift anisotropy &. in frequency units is linearly dependent
upon the magnetic field according to first order, and therefore so is
0.g- The second order quadrupole transition frequency ahéz), on the
other hand is inversely proportional to the static magnetic field while
the first ?rder perturbation for quadrupolar or dipolar interactions are
independent of the magnetic field. Due to the different field
dependence of the interactions, the spectrum as well as the critical
frequencies governed by either 1) or «2) will show systematic changes
with varying magnetic fields. The critical frequencies corresponding to
critical points in the w(®, ¢) surfaces, and the characters of these
critical frequencies (shoulder, step, or singularity), locate the
prominent features of the powder spectrum. It is the purpose of the
current studies to utilize the field dependent critical frequencies to
infer the relative tensorial orientations and the individual interaction
parameters. This approach in obtaining the parameters is shown to be

more efficient than a complete powder NMR line shape simulation of the

variable field spectra.
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The equation applied to evaluate the critical frequencies is derived
in a manner similar to the algorithm provided by Jellison et al.29 as
shown in [A-9], or [A-10] in Appendix A. Equations [A-9] instead of [A-
10] is used in the following. Although sin® = O is a natural
singularity when using [A-9], the boundar§ condition that cos&= +1 will
be required to account for the step of the spectrum if [A-10] is

employed. [A-9] written in its discrete (6, ¢) analogue as

-1
=%
= N § |grad{u(e,, )| [43]

I(w)= N [ désin® ld¢|grad{uw (8, 9)} |

Where N is the normalization constants which is a function of the
transition probability and the density of the nucleus present. The
index i represents the individual crystalline orientations. Subscript
k, denoting the k-th transition is dropped from [43]. This equation
states that the contribution to the intensity of the spectrum at w=u(8;,
$;) is the inverse of the amplitude of the gradient at that frequencies.
Hence the locations of the critical points in the w=uX8, ¢) surface can
be determined by evaluating the zeros of the gradient where the
contribution of intensity to the speétrum from this orientation (&, ¢g)
is infinity at the frequency w=uw(€y, ¢p). The corresponding critical

_ frequencies in the spectrum are determined by inserting the solution
(€&, ¢g) to the spatially dependent resonance frequency [42a], [42b].

The character of these critical points are determined by the sign of

the Wronskian determinant D, where
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D= [( 3%w 3030)°- (3%w 3¢%) (2w 36%)] (44]

If D>0 then solution (&), ¢g) will be a saddle point. If D>O then
(€, ¢p) will be a local extremum in the w(8, ¢) surfaces.

In order to calculate the critical frequencies it is necessary to
solve the two nonlinearly coupled equations corresponding to the two
components of the gradient of [43]. The solution is obtained by
applying Brown’s method where an iterative algorithm starting from a
randomly grided (O, ¢) paif is used. Numerical techniques are employed
to avoid missing or overlapping the critical points. Although an
analytical expression of these critical frequencies facilitates the
determination of the parameters from the experimental data, this
expression can only be found for several limited orientations. In the

next two sections, these expressions will be evaluated.
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FIRST ORDER QUADRUPOLE VS. SHIFT INTERACTION

In this section is derived the expression for the critical
frequencies as a function of interaction parameters for the system
governed by the first order quadrupole and the shift interactions. The
result is also applicable to the dipolar (homonuclear or heteronuclear)
vs. the shift interaction due to the identity of the spatial dependence
of the dipolar interaction and the first order quadrupolar interaction.
Some simple cases have previously been studied.30 For a general
condition, more accurate field dependent relations will be derived in
the follows and will later be demonstrated by an example.

The two first order interactions should be of comparable magnitude
to exhibit the combined effect of the interactions and the tensorial
orientation. Hence the case for first order dipole vs. chemical and the
quadrupole satellite transition vs. Knight shift are two frequently
encountered cases. Ve shall consider the general case for the satellite
transition governed by the first order quadrupolar and relatively large
shift interactions, and simply replace the coupling constant by 4, and
Mg by O when the dipole vs shift case is encountered.

The transition frequency for oriented first order quadrupolar and
shift interactions associated with the spatial orientations (&, ¢) and

the mutual orientation (e, B, v) is found from [32] and [41]

w(1)=w + wu)
¢cs qd

= Con(cose)+ Clsin28c05(91)+C25in26cos(92)

+6q [By(cos®)+ % nqsin26c052¢] [45]
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Note that Sq contains two frequencies with inverse sign. Evaluating
the location of the critical points in the w=uw(®©, ¢) surfaces as
described above, and determining the critical frequencies is achieved by

finding the zeros of the component of the gradient. The two gradient

components of [45] are:

(1)
%g =§;sin28[8q(3—nqc052¢)+(3Co-202cos(92)]+201c0326cos(Q1) [46a]
a2
r i sin G[Sqnqsin2¢+ 2C2sin(92)] +Clsin285in(91) [46b]

(1). Obvious solutions for [46b] are cos@=+1 (& = 0,n). Because of
the C1 term, this condition may not give zero for [46a] if Cy# O;
however by choosing ¢ appropriately, the solution cos€=:1 may still
exist. Hence tvo conditions that give simultaneous zeros-for both
equations are:

la: cos€=:l, C1=0, in this case, ¢ is not determined, and is
immaterial.

1b: cos€=:l, C1#0, in this case, ¢ is determined by cos(¢+¥7)=0,
e.g., ¢=Yix+W2. '

It can be readily seen that for both cases the critical frequencies
will be independent of the angle ¢ since only the Py(cos®€) term in the
first order quadrupole part and the Cy term in the shift part will
remain after inserting cos©=:+1 into [45]. This is the fundamental
critical frequency that will appear as a step in all the spectra. For

W, and wyp the fundamental frequencies are identical and are
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independent of angle ¢ as well as Cy. The critical frequency is :

T 8 ,-Up 8B, (cosE)+ 2 sin®geos20] [47]

If evaluating the critical points by employing [A-10], [47] is
obtained from the boundary on the w(®, ¢) surfaces where u=cost=:l.
This frequency is also referred to as the distributing edge since all
orientations that are perpendicular to the external magnetic field will
resonate at this frequency.

(2). If Cy=0, it is observed that cos6=0 will be a solution of
[46a). This is then inserted to [46b] to yield the two possible values
of cos2¢. The corresponding critical frequencies are:

2a: cos2¢=1, ¥»=0, C1=0

w(%; . %— 3, (n~1)- % §[costB(1-ncos2a)-2sin> @] (48]

2b: cos2¢=-1, ¥p=0, C1=0

(1) _ -1 L

Wy =3 6q(nq+1)— 5 8(1+nc?52a) [49]
Both solutions exist simultaneously under the condition Cy=0. When

C1#0, one of the above critical frequencies still appears, providing

that the solutions of cos2¢(= +1) also satisfies condition cos($+¥y)=0.

This implies ¥; should be equal to multiples of w2. 1In this case, the

critical frequency will be described by either 2a or 2b, but not by

both.
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There are other solutions to the two coupled equations [46a], [46b]
under the condition Cy=0. However, they yield identical results to
those discussed above, as will now be seen. One solution is sin&=0.

This is identical to the case in 1b for varying ¢. Another possible

solution to [46a] is:
cos2¢= ¢3(co+sq)/( sqnq+2c2) [50]

which after insertion into [46b] yields

sinze[(éqnq+202)2—9(co+ 5q)2]1/2=o [51]

The solutions yield either sin&=0 or sin2¢=0 , which are found to be
identical to case 1b, or 2a, 2b discussed before.
For the functions, cos®© and sin® not equal to the special values, O

or +1, the solution is slightly complicated but solvable as shown in the
following:
Let K= AClcos(Ql)/[8q(3-rhcosz¢)+BCO—2C2cos(Qz)j [352]

then [46a] can be written as:

sin2&=Kcos29 [531
hence cos26 expressed in terms of K becomes

cos2@+(1+k%) 7172 [54]

This relation is when substituted into [46b]}, gives

w . . . o
3% =0 _(1—c0526)[Sqnq51n2¢+C251n(92)]+2€2Kc0528 s1n(w1) [55]
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Let 2= cosé+ising. Multiplying 22 on both sides yields:

Z3(pZ+q) + SsZ+r =0 : [56]

with coefficients p, q, r, and s equal to

i?é i¥.
p=(1-c0s20)(& n +C,e ) g= 2C.Kcos26 e
qq 2 1
[57]
—i?é —iWi
r=—(1-cosZG)(8qnq+C2e ) = —2C1Kc0529 e

These equations together with [53] form an iterative set. Problems
of missing the singularities using Brown’s algorithm in solving the two
coupled nonlinear equations can thus be avoided by solving the two
iterative.relations [53] and [56] for general orientation (e, B, ¥)
vhere C; or ¥, will not necessarily be zero.

' Based upon the above derivation, explicit relations can be derived
for some special orientations. Similar to‘the cases discussed
previously, the special orientations satisfy sin¥p=0, and(or) ¥; being a
muitipie of w/'2 (incliude 0). These conditions are satisf
shift principal Z axis lies in the XZ, YZ, or XY plane of the e.f.g.
tensor.

Because the constraint, sin¥y=0 is imposed for the special
orientations, value p equals -r and are both real. Depending on ¥{, two

cases may occur.

(a) When p=-r, and q=-s, i.e., ¥= 0,:n, polynomial [56] becomes:

[p(22+1)+q1(z2-1)=0 (58]

vhich gives an obvious solution, cos¢=+i. Consequenily cos2¢=cosZ¥q=1.
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(b) When P=-r, and g=s, e.g., Y¥(=xw/2, [56] becomes:
2 2
[p(Z°-1)+ql(Z27+1)=0 {591]

where another solution, cosé¢=+i is obtained. This corresponds to

cos2¢=cos2¥=-1.

For these special angles ¥; and Y, the critical frequency 1) can

be expressed as follows:

-

oo 7 c0S26[3(Cy#8,)+ 4C;Keos(#+¥,) [60]

~c0s24(2C,cosY,+8 N )]+ Hs +Cq+cos28(2C,cos ¥y +8 N ) ]

q

with co0s20 defined in [54], and

4
K= § Cyeos(o+¥)) [61]
The denominator Q in [61] is given by
D= & (3N cos2d)(3C.-2C sY-
Q= & (3-n »v~-¢,.\-C0 2 2co=?2c052¢) [62]
Because the solutions of [58], [59] insure that cos2¢=cos2¥i=:x1, the
term cos(¢+?i)2, vill always be equal to unity. This conclusion

implies:

(a) combining [541,[61],[62], cos26 becomes

c0s28 = +

Q
[63]
(02 (401)2 3172

(b) the critical frequency will not be dependent upon the sign of
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cos(¢$+¥;), because when {61] is replaced in the second tefm of [60] it
is found that the critical frequencies depend only on cosz(¢+Yi). In
other words, the sin2® dependent term; Cisin2€cos(¢+¥7) in [453] is
completely independent of the sign of cos(¢+¥y). Therefore the sign of
K which determines the value of co0s26 and the quadrant of the 6 angle,
will be immaterial in determining the critical frequencies. This
implies that both positive and negative values of cos2® will be the
solution of the critical points that are independent of the quadrant of
the © angles.

The angle Y, is maintained in the equation because cos¥) may take
twvo values, +1. To simplify the notation, we shall denote £ = cos¥y
=+1. Hence we have the following (3) and (4) cases.

(3). From [58] we have cosZ¢=cos2¥;=1. Inserting the solution for
c0s28 and the related conditions into [60], four singularities can be
found.

3a: cos2&0, sin¥y=0

3b: cos2€K0, sin¥y=0

The corresponding critical frequencies from [60] are:

(1) 1.2 2,172 1 . - " . s
w 3a,3b = 7 [Q +(4Cl) ] * 7 [8q(1+nq)+(Co+LC2€)] i64]

vhere the positive sign in [64] corresponds to positive values of cosZ®

and the constant, Q is given by

Q= 8q(3—nq)+(3co—202€) [65]
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(4). From [39] we have cos2é¢=cos2¥j= -1. Inserting the solution for
cos28 we have

4a: ¢os2®0, sin¥p=0

4b

c0s26&K0, sin¥p=0

The corresponding frequencies are:

) i = 2 L Qep?1M? v 15 (n)e(cp2c,0]  (66]

where the definition of Q is slightly different then [65]:

Q = 6q(3+hq)+(3C0+2C28) [67]

This concludes the evaluation of the critical frequencies for the
first order quadrupolar and the shift interactions.

Some features of the solutions are discussed and compared. Cases
(3) and (4) are mutually exclusive, again because of the equality, cos2¢
= cos2¥; cannot take both positive and negative values. Also 3a and 3b
exist simultaneously as do 4a and 4b. Notice that when & (=cos¥j)
e a result of rotating v by n, the result doees
not equal to interchange of cases (3) and (4). The conclusion that a
completely different critical frequency and hence different spectra
occur when y is incremented by n is.contradictory to the coincident
assumption that spectra are independent of orientation «, 8, v. If
C1=0, all cases in (1) and (2) but neither cases of (3) or (&)

characterize the critical frequency. However if C;#0 one need consider

only (3) or (4) and the fundamental frequencies (1) and possibly either

2a or 2b.
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The shift anisotropy §; (in frequency units), linearly dependent
upon the magnetic field to first order, is the only term that will be
affected when the field strength has been changed. The critical
frequency can be mapped as a function of the magnetic field. This
mapping allows the extraction of the interaction parameters and the
mutual orientation of the two interactions.

Calculations have been performed for several special orientations.
The calculation uses |8q| = 0 as the reduced unit for both the x and y
axis, the asymmetry parameters are nq=0., N.=0.3. The calculated
critical frequencies as referenced to op=0 are plotted as a function of
the Larmor frequency (magnetic field) as shown in Fig. 1. One
interesting feature of these plot is that the mapping is not all linear,
as might be expected, since the shift is linearly dependent upon the
field and the quadrupolar interaction is completely independent of the
field according to first order. The nonlinear behavior as a combined
effect of shift and the first order quadrupolar interaction, found in
the curves represented by case (3) and (4) is due to the coefficient Cq,
and Cy appearing quadratically in [64] and [66]. Also notice that the
intercepts at zero field, which determine the critical frequencies of
the first order quadrupolar interaction are dependent upon the asymmetry
parameter Ty, while the patterns are totally dependent upon the choice
of both n, and g and the orientation.

As a comparison to the calculated critical frequency curves, the
complete powder line shape at three fields corresponding to &/4 = 0.2,
0.5 and 1.8 are also shown for each orientation in Fig. 2. Notice the

two calculations are consistent.
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SECOND ORDER QUADRUPOLE VS. SHIFT INTERACTION
In this section are derived expressions for the critical points as a
function of the field for spectra that are inhomogeneously broadened by
shift and second order quadrupole interactions. The central transitions
of half-integer quadrupolar nuclei in the presence of nonnegligible
shift anisotropy are thus described. The resonance energy as a function

of the spatial orientation is found from [34] and [41]:

(2)

w

(2)
Des® “)qd

COPZ(COS 6)+Clsin2 ecos( 5'21)4-025:1112 Ecos( 522)

%0[ A($)cos*B($)cos?8:C($) ] . [68]

The location of the critical points in the w=uw(8, ¢) surfaces as
described above are obtained by the zeros of the compenents of the
gradient. From [68] the two components of the gradient are:

(2)

dw .
- - %(3+nqc032¢)2c0526—(5—%n2+ %coszq»nzcoszz@

“

4
+ T%{BCO-ZCzcos(S?Z)]} %chcoszecos(s‘zl) [69a]

i - 12&0 sin2¢sin”@ [nq(9cos 8 +1)—3nqc032¢sm o]

2. . .
- 20251n esm(Qz) -Clstesm(Ql) [69b]

(1). One obvious solution for [69b]=0 is cose&=+1 (& O,m). If Cy#
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Hence the following two conditions yield simultaneous zeros for [69a]
and [69b]:

la: cos6=+1l, C1=0, in this case, ¢ is undetermined.

1b: cos€=+1l, C;#0, in this case, ¢ is determined by cos(¢$+¥,)=0,
e.g., $=Yq+w/2.

For both cases, the critical frequencies are independent of 4.
Since after inserting the condition cos€=:1 into [68], only the Cp term
in the shift part remain and the sum, A($)+B(¢)+C(¢d)= n2/6 as evaluated
from [35], is independent of angle ¢. Hence the two fundamental

frequencies w5, and wy, are:

2
(Q 1b 220:0 a8l P,(cosf)+ 3 sin’fcos2ol 701

These critical frequencies appear as a step in all the spectra.
These critical frequencies will not appear when evaluating the critical
points using [A-10], but can be retrieved by applying the boundary
condition cos® = +1 to the &S, ¢) surfaces. This is referred to as the
distribution edge. All orientations parallel to the magnetic field will
resonate at this frequency.

(2). If Cq= 0, cos€=0 is found to yield a solution to [69a]. This

is inserted to [69b] to obtain the condition on ¢, which gives

sin¥,cos2¢ [71]

w_ R
2% 25115

-—:% 3n cos¢—R Zéabc cos? )sin2¢ +2C

Cos¢ in this equation can be solved as a polynomial of fourth order

and hence gives a maximum of four solutions within the range |cos¢|<1.
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These can be obtained numerically using Newton’s method. Identical
ecritical frequencies may be obtained for different solution of cos¢
after insertion into w(2),

The critical frequency evaluated at C1=0, cos&0 and ¢ obtained from
the condition [71]=0 will be:

(2) R
w',y'= wocu:) 2 )

cos(Qz) [72]
Special cases are discussed when the shift principal Z axis lies in

the meridian or the equators of the e.f.g. principal axis, (i.e., either

XY, YZ, or XZ plane). Y in this condition must equal zero or &m.

Hence [72] can be further simplified after inserting sin¥y=0. This

gives the following solutions of angles and critical frequencies which

are independent of value Cjp:

2a: cos€=0, cos2¢=1, Yy =0,zn

(2) ii%ii<3 n ) g{Coszﬁ(l—hCOSZa)—Zsinz6] [73]

2b: cos&0, cos2é=-1, Y= 0,zn

(gg iiéab(3 n ) - [1+nco52a] (74]

A third solution is obtained where the conditions on ¢ are solved
from the zeros of the bracket in [71] instead of from sin24=0. This

frequency is denoted as curve 2c.
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2c:  cos€=0, ¥=0,+n with

24 2
cos2é¢= (nq- -§-ubC2cos?é)/3nq [75]

The corresponding frequency for 2c is:

W50 - 15 (1‘”5) - 5 Gy 3—}1' Cym = 5 [76]
q th

Although the condition C1=0 has been assumed in the above results,
wvhich leads to the solution of cos€=0 from [69a] and alternatively
yields the solution for cos2¢, this requirement is not required if the
condition on ¢ also satisfies cos(¢+¥{)= 0. In the case, the above
solutions and the corresponding critical frequencies will also appear.

For a general orientation, sin¥, is not zero. In this case, the
solution can be obtained by solving [69] as mentioned previously. We
will refer to this solution as frequency 2d. The expression of the
critical frequency is that of [72].

There are other solutions when cos® or sir® # 0 or +1 which are
considered belowv in the case (3), (4), (5) and (6). Again the
analytical solutions are available only for the case, sin¥y =0, i.e.,
when the principal Z axis of the shift lies in the meridian or the
equator of the e.f.g. principal axis.

If Cq =0, and sin¥)=0, [69b] yields a solution for sin2¢=0, e.g.,
cos2¢=+1. This leads to the following two cases:

(3). Cos2¢=1, C;=0, sin¥y=0. Inserting these condition to [69a]

cos® can be determined as follows.
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2 2
cos“e= -40)0(3C0-2C2)/R(hq+3) +(nq+5)/3(nq+3) [77]

From [68] the corresponding critical frequency is

o) = RO +1)/9uy-[304+2C, (n +2)1/3(n+3)

2 2
- ub(ZCO—3C2) /(nq+3) R [78]

(4). cos2¢=-1, C1=0, sin¥p=0. In this case, cos® is determined

from [69a] as follows:
2 2
cos“e= —4&)0(3C0+2C2)/R(nq—3) +( nq—S)/3(nq—3) [79]

The corresponding critical frequency from [68] is

wiz) = RO -1)/9uy-[3C4+2C, (0, -2)1/3(n -3) [80] -

. w0(3c0+2c2)2/(nq-3)21z

The signs of cos® in [77] and [79] is immaterial since all remaining
terms in [68] depend only on cosZe.

Unlike the cases discussed in 2a, 2b, 2c¢, or 2d, the requirement
that C1=0 is essential for these two singularities since if Cy # O,
those solutions that satisfy cos(¢+¥()= 0 in [69a] gives nonzero terms
such as Cysin20 in [69b]. Although cos® or sin® equals O or z1 yield
zero for value Cysin2®, this case is identical te 2a — 2d and will not

be considered.
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For the general case, C1#0 and qonSprcial values of 6, the following
(5), (6) cases appear. The condition sin¥=0 is required as in case (3),
(4). This orientation corresponds to the principal Z axis of teh shift
tensor lies on the XY, YZ, or XZ plane of the e.f.g. tensor. The
accompanying condition sin(¢+¥7)=0 may frequently occur in this
orientation. Hence the solution sin2¢=0 inferred from [69b] will also
exist as cases (3), (4) above. This implies ¢= +n,0 and consequently ¥;
should equal +nm or 0. Furthermore, for arbitrary orientations (e«, 8,
v), solution cos2¢= 1 and cos2¢=-1 appear separately. Therefore the
following two case (5), (6), are exclusive of each other. To obtain the

critical frequencies we insert the above conditions in [69a]:

Rsin2®
2. o- T(M )2cos’e- 5(n +3)(n25)

+ E—ub(3CO; 2C,) -2c0s2€C,cos($+Y,) [81]

The : sign corresponds to the two solutions when cos2é=+1. This is
again a pclyncmizl of fourth order where the solutions of c0s286 can be
obtained numerically. The critical frequency can be evaluated after
inserting solution co0s26=f obtained from [81] to [68]. This yields the
next two critical frequencies,

(5). cos2é=1, C1#0, sin¥y=0 and cos(+¥;)=11

“}g) 124&b[9(n +3) E 6(n +3)(h +5)E+(h 3) ]

2 (3,-2C,) - 2 (C4-2C,)+ C, (1- £2y1/2 (82]
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(6). cos2¢=-1, C1#0, sin¥9=0 and cos(P+¥j)=%1

(2) _ R ) 5
o' = Tag 1y -6 -3)(n -5 & (n+)]

. é— (3€,+2C,) E- %_—(co+2c2)+ Cl(l-EZ)l/z [83]

For each of the cases (5) or (6}, there are four independent
solutions for & and hence the critical frequencies. The notation 5a,
5b, 5c, and 5d or 6a, 6b, 6¢c, and 6d are used to denote these solutions.
The sign of C; term is always positive because positive cos® gives
negative sin28 and vise verse.

Calculations have been performed for some orientations. In Fig. 3,
the critical frequencies vs. the magnetic field as represented by the
Larmor frequency V) have been shown. The parameters used in these
calculation are: &, = -40 ppm, n, =1.0, e2q0= 2.0 MHz, nq=1.0. Since
the effect of an e.f.g. is inversely proportional to the magnetic field
to second order, while the shift interaction is linearlv proportional to
the magnetic field, the critical frequency curves governed by these two
interactions are found to be nonlinear with the magnetic field. At high
fields the critical frequencies gradually converge to that observed for
a nonaxially symmetric shielding spectrum, while in the low field limit
the second order character gradually dominates. In the limit of zero
field, the perturbation treatment breaks down. Hence the second order

perturbation treatment becomes less accurate and may be invalid at the

low field limit.
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Similar to the previous case, a complete powder line shape
calculation using equation [21], has been performed to compare with the
calculations of the critical frequencies as shown on the right of Fig.

3. The ratio used in Fig. 3 are defined as follows:

3
c

6 2 (yp?10°

Ratio=

3¢ is the shift anisotropy in unit of ppm, vy is the larmor frequency of
the quadrupolar nuclei in units of Mhz, and R is defined in [33], [234]
and [35] in (MHz)Z. The values used in the calculation gives R= 3 Mhz2
for spin I=3/2 and the three ratios shown in Fig. 3 corresponds to the
magnetic field of 50 MHz, 79.0 Mhz and 150 MHz respectively. It can be
seen from Fig. 3 that the critical frequencies observed in the powder
line shape.are predicted correctly at these three frequencies.

As a comparison of the effect of mutual orientation upon the powder
speétra, the critical frequencies for coincident orientation, (e, 8, v)=
(0.0, 0.0, 0.0) and noncoincident orientation (e, B, v) = (60.0, 90.0,
0.0) are shown together in Fig. 4 for three different e.f.g. and

shielding asymmetry.
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EXPERIMENTAL

Here the applicability of the above treatment is demonstrated by
determining the interaction parameters for a system composed of two
major interactions with one being the shift interaction.

The simplest approach in determining the interaction parameters
would seem to perform an iterative powder line shape fitting for spectra
taken at a single magnetic field. The iterative calculation should
include the six interaction parameters and the mutual orientations
between the two interactions. As a result of the larger number of
unknowns involved, the iteration converges relatively slowly. Although
unambiguous results can be attained in principle by iteratively fitting
the spectra taken at several different magnetic fields with good signal-
to-noise ratios; the calculation involves a large number of iterative
calculations is in some case, a formidable task and impossible or
impractical to perform.

The current approach reduces the scale from fitting of the powder
line shape to fitting of the field dependent critical frequencies in
determining the interaction parameters and the mutual orientations.

This approach is simpler and more accurate than an iterative fitting at
a single field.

The system trichloro-acetic acid (TCAA) has been chosen to
illustrate the applicability of the theory since the internal
interactions of the protons in this sample are governed by both chemical
shift and homonuclear dipolar interactions from an isolated dipolar
pair, and neither interaction dominates the spectrum in the magnetic

fields measured. Two features of the spectrum are expected: (a) the
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spectrum can not be approximated by either the shift powder pattern or
the dipolar Pake doublet; and (b) the resulting spectrum will be
strongly dependent upon the mutual orientation of the two interactions
as previously shown. The field dependent critical frequencies of
mutually oriented shift and first order quadruple interaction tensor
discussed previously can be readily applied after replacing Sq with 4,
and a zero asymmetry g of the dipolar interactions. The dipolar
coupling constant 4 is the peak-to-peak splitting of the Pake doublets.

The sample was dried under He gas and pyrophosphate (P705) before
sealing under vacuum in a Pyrex NMR tube. A simple w2 pulse was
applied to obtain the transient signal. The spectra were taken at three
different fields and are referenced externally to water. These are
shown in Fig. 5.

The critical frequencies are located from the derivatives of the
absorption spectrum which are listed in the first half of Table I.
These critical frequencies correspond to the shoulders of the spectrum
and are harder to locate than those corresponding to steps or
singularities and therefore are only roughly estimated.

A fitting of these values is performed by matching the frequencies
calculated from the zeros of the grédient according to equation {46] for
the three different fields while iteratively varying the six parameters
g, & Ny 8, o, and 8 until the minimum value of the difference squares
is reached. The curves correspond to the shoulder are not incorporated
in the fitting due to the larger errors related to these points. The
angle vy is undetermined (and not important) since one of the

interactions (dipolar) is axially symmetric. This iterative fitting
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takes “30 seconds cpu time in the VAX/VMS system. The results are
listed in the first row in Table III.

A even faster and less rigorous approach based upon the above
procedure can be found. This approach involves comparing the calculated
and experimental patterns of the critical curves. First the critical
frequencies are referenced to the isotropic shift, ¢y, before
correlating with the magnetic field. Second, the approximate
orientation (o, B) is found by comparing the characteristic pattern of
the frequency vs. field curves with that calculated for the seven
special orientations. Finally, using the analytical expression
corresponding to the critical curves for that orientations, the other
three interaction parameters 3§, n., 4 are determined.

For spectrum governed by the first order perturbation, the center of
mass of each spectrum corresponds to the isotropic shift value og. This
condition is satisfied in the current system. éence 0o is calculated by
zeroing the first moment of each spectrum. The critical frequencies are
further referenced to the center of mass of the spectrum as listed in
the second half of Table I. 1In Fig. 6 is shown the correlation of the
corrected critical frequencies vs. magnetic field. The correlation
curves for TCAA resemble most those calculated for the orientation =0,
B=90 in the low field region (Fig. 1). This orientation is a reasonable
approximation of the true orientation. The solid and the broken curves
dravn through the related points are the linear least square fits of the
points of these curves with the series number denoting the analytical
critical frequency expression for orientation («, 8)= (0.0, 90.0). The

analytical expressions of these curves from [47], [48] and [49] are
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rewritten below:

®1b 8 +a08[P2(cosB)+g sin?pBcos2a) (85]
A3

W, g, *5 -upy [Lencos2a] [86]

Wy ¢ 3 ~upy [cos2A(1-ncos20)-25inlg] (87)

the parameter A can be determined from either the spacing or the
intercepts of the parallel pairs, which is 4 for the inner two pairs and
20 between 1b and -1b. Therefore, & and N can also be found after
inserting the value «, B and A into the analytical expressions [85],
[86] or [87] and solving the coupled linear equations. This results are
listed in the second column of Table III.

Features of these critical frequencies are noted: (a) although six
critical curves appear, only three distinctive slopes exist, i.e.,
curves 1b, 2a and 2b. The corresponding parallel curves -1b, -2a, -2b
yield the intercepts of opposite sign, and (b) the intercept at zero
field represents the critical frequencies in the absence of the shift
interaction. Therefore, the intercept of 2a, 2b coincide at 4/2 and -
2a2, -2b at -A/2 while 1b and -1b vield intercept at +4 respectively,
which clearly shows the features of a Pake-doublet. The critical
ferquencies shown in Fig. 1, further illustrates these relations.

The above approach limits the mutual orientation to the closest
special orientation where the analytical expressions of all critical
curves are available. Although this simplification introduces errors in

the orientation «, B and the asymmetry parameter n, the dipolar coupling
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constant, A and the shift anisotropy & determined are quite accurately
determined. The results are to be compared with those obtained from the
iterative approach by matching the zeros of the gradient at the three
fields as shown in the first row of Table III. Note that the second
approach is not intended to replace the iterative fitting of the
critical frequencies but simply to serve as a convenient estimation of
the interaction parameters. The near orthogonal orientation between
shielding tensor and the internuclear vector, and the interaction
parameters are consistent with those obtained from a single crystal
studies by Dybowski et al.3l

A static powder line shape calculated is finally performed using the
best fitted values from the critical frequencies of mutually oriented
dipolar and chemical shift tensors. This calculation is performed
according to [21], where the transient decay signal governed by the
orientation dependent eigen-energies is first calculated followed by
Fourier transform of this averaged decay to yield the spectra. The
calculated results are shown in Fig. 7 which is to be compared with Fig.

5; the experimental spectra.
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DISCUSSION

The orientation of individual spin interaction tensors in solids is
dependent upon the local electronic environment of the nucleus studied.
For example, the orientation of the shielding tensor depends upon the
local electron density, the quadrupole interaction depends upon the
orientation of the electric field gradient tensor and the tensor
orientation of dipolar interaction is coaxial with the internuclear
vector. These orientations are in general independent of each other.
From the analytical expressions given for the special orientations, it
can be inferred that imposing the assumption that the two interaction
tensors have the same orientation will lead to large errors in
determining interaction parameters. The asymmetry, in particular, is
sensitive to the choice of the orientation angles. As a result, it will
be hard if not impossible to obtain consistent results when the fitting
is performed for spectra taken at different magnetic fields. This error
becomes more severe when the magnitudes of the two interactions are
comparable.

On the other hand the effect of the mutual orientation of the
interaction tensors will be less dramatic if one of the interactions is
larger compared to the other. Such a situation may occur when
experiments are performed at extremes of magnetic fields. This
conclusion can be inferred from the calculation shown in Figs. 1 and 3.
At lov magnetic fields when the magnitude of the shift is much smaller
than the dipolar or the quadrupolar interactions, the effects of
different orientations upon the spectra and the critical frequency

curves are much harder to differentiate.
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From the above discussion we concluded that: (a) the method of
finding the interaction parameters by monitoring the field dependent
critical frequencies is most useful in the regime where the two
interactions are of comparable size; and (b) to be able to yield the
most accurate results when applying this method, particularly in the
mutual orientation and the asymmetry parameters, data should be obtained
at a sufficiently large range of magnetic fields.

In the following is discussed the limitations of the method
according to the assumptions made in inferring the mutual orientations
and the analytical expressions.

(1). The major interactions governing the spectrum are assumed to
be inhomogeneous. In other words the broadening of the spectrum
origﬁpates from a superposition of inherently sharp lines associated
vith the random distribution of powder sample, or possibly a
distribution of the interaction parameters (the electron density, the
electric field gradient) throughout the micro-crystallite. Homogeneous
effects originating from nonsecular terms in the internal Hamiltonians
are assumed to be weak compared to the effects of inhomogeneties causing
only a "smoothing" of the inhomogeneous spectra. In calculating the
powder spectra as shown in Figs. Z and 3, the "smoothing" or
"broadening" effect has been accounied for by multiplying a decay
function to the calculated transient signal before Fourier
transformation.

When homogeneous broadening becomes sufficiently large, the spectrum
gradually loses its prominent inhomogeneous features and assumes a form

approaching that of a Gaussian or a Lorentzian line. This approach
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becomes useless in this condition as is also true for other methods of
isolating the individual interactions such as multiple pulse techniques
or MAS of iterative line shape simulations.

(2). In the presence of sufficiently large shifts, such as Knight
shifts in a metal or the shift for heavy nuclei, where the anisotropy
and the shifts may be few percent, the calculation must be carried to
second or higher order. Therefore care should be taken in applying the
current method to systems where higher order perturbations may be
necessary to account for the observed spectra.

(3). The antisymmetric component in both the shielding and the
e.f.g. principal axes tensors have been completely neglected in the
calculations. The presence of these components depend upon the nuclear
site symmetry24 and are found to contribute to the second order. While
this may not be important for the shift interaction it may produce extra
features for the central transition spectra where the second order
perturbation dominates. Quantitative effects of the antisymmetric
component of the e.f.g. tensors upon the quadrupolar central transition
line shape have not previously been reported.

(4). The calculation is performed in the Zeeman region (as opposed
to the quadrupole region) where the effect of the electric field
gradient can be treated as a perturbation on the Zeeman interaction. In
this limit, it is legitimate to consider only first order perturbations
for quadrupole satellite transitions or the dipole interaction and
second order perturbation for the half-half central transition of half-
integer quadrupolar nuclei. As the quadrupolar coupling increases, the

perturbation approach may yield incorrect results even when higher order
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contributions are incorporated. A scheme in solving for thé eigen-
energies and the spatial dependent expressions is required. Studies of
this type when the quadrupole interaction is comparable to or much
larger than the Zeeman interaction have been discussed by Nicol32 and
Abragam.23 Unlike the case of the Zeeman limit, the coincident
orientation assumed for the e.f.g. and shielding tensor in these studies
is a reasonable one,33 since in the low field limit where the shift is
much smaller than the quadrupolar interaction, the mutual orientation is
less influential to the spectrum.

(5). There are cases when the three major inhomogeneous
interactions, i.e., gquadrupole, dipole, and shift interactions are
simul taneously present. Analysis of the spectrum may be tedious in some
cases, but can be carried out in the same manner as demonstrated in the
previous section as long as the spatially dependent transition
frequencies are determined. Evaluating the analytical expression for
those special orientations is more difficult. Nevertheless the
numerical procedure in determining the field dependent critical
frequencies according to [46] or [69], and using the spatially dependent
transition frequencies and equation {21] to calculate the powder line
shape are still the same. The fundamental frequency ia, ib still holds
in this case. Torgeson at al.3% have performed this type of analysis
involving three interactions. The assumption that all three principal
axis tensors are coincident, make the treatment possible. However, this
may produce a large error in the derived parameters.

(6). Finally we shall mention that the spatial dependent expression

of the transition frequency are only valid for single quantum coherence.
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The transition probability Py for the m-th single quantum transition is
assumed to be independent of the orientation and proportional to
|<k|Iylk-1>|2 for both the first order and the second order
perturbation. During the period of the rf irradiation, the evolution
effect of internal Hamiltonians large compared with the rf field may
produce higher quantum coherence and an orientational dependent
transition probability for the micro-crystallite sample. Although the
powder spectra line shape is distorted by the effect, the position of

the critical frequencies where an infinity in the intensity occurs is

less affected.
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CONCLUSION

In a nuclear system governed by two interactions where neither
interaction dominates, the combined effects are an inhomogeneously
broadened spectrum which depends not only upon the individual
interaction parameters but also strongly upon the mutual orientations
between these tensors. The studies shows that: (a) the effects of the
mutual orientation between interaction tensors are reflected in both the
static powder line shape and the distinctive features of the field
dependent critical frequencies as shown in Figs. 1 to 4, and (b) the
tensorial orientation between interactions and the individual
interaction parameters can be determined by analyzing the critical
frequencies (singularities, shoulders, and steps) of a powder spectrum
vs. the magnetic field strength.

Field dependent critical frequencies'and the powder spectra are
calculated for oriented e.f.g. tensor and shielding tensor to both the
first order and the second order perturbations. Although the method
developed is valid for both satellite transitions and the central
transition of spectra of quadrupolar nuclei under the influence of a
shift interaction, modification can be made easily to incorporate three
interactions, e.g., quadrupolar, dipole and shift interactions, or to

involve higher order perturbations.
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Table I
The critical frequencies of TCAA spectrum at three fields

By (MHz) 56.05 100.09 220.16
C.M.(kHz)® -0.640.2 -1.0+0.2 -2.2:0.2
A(kHz) 10.5 10.0 8.0

B 5.4b 5.1 4.8

c 4.4 3.7 1.7

D -5.2 -5.3 -5.4

E -6.40 -7.0 -8.6

F -11.9 -12.5 ~14.1

Below: corrected frequencies w.r.t to the center of mass

A(kHz) 11.1 11.0 10.2
6.0b 6.1 7.0

c 5.0 4.7 3.9

D 4.6 -4.3 -3.2

E -5.8b 6.0 6.4

F -11.3 . -iil3 -11.5

2 Center of mass is calculated by zeroing the first moment.
This value is taken as the isotropic shift.

b This critical frequency is only estimated roughly due to the
broadness of the peaks and the ambiguity of the position of the
shoulders. '



Table IX

Properties of the six critical frequency curves

|

| A B o D E F

I

|
Series? | -1b 2a 2b -2a -2b  1b
Intcps.(KHz)| 11.5 5.6 5.4 -5.3 -5.6 -11.2
Slope(PPm) | -5.2 9.4 -7.7 10.9 -6.6 -4.6
Character? | Stp Sdr Sng Sng Sdr Stp

|

l

@ The series number of the critical irequencies vs. Field

curves for orientation =0, £90.0.

b The characters of the critical frequencies, where Stp=

Step,'Sdr= Shoulder, Sng= Singularity.
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Table III

Parameters of the two interaction tensors in TCAA

I
I
methods | op(ppm) 8(ppm) n A(KHzZ) o 8
I
I
I
Iterative | -10.5 13.5:1. 0.2:.1 11.1:.2 20.:30 80:10
Linear | -10.0 10.5:1. 0.4:.2 11.3:.4 0.0 90.0
Single X’tal?| -10.0 13.7:.5 0.15:.1 11.25 0. 80.
I
I

a From Dybowski et al.3l
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Figure 1.

Field dependent critical frequencies of the dipolar vs the
shift interaction are calculated from [45] and the zeros of
the gradient from [46] for eight selected orientations. The
shift anisotropy is expressed in the reduced units of the
dipolar coupling constant. The asymmetry value of the shift
interaction is chosen to be n=0.3. If the first order
quadrupolar instead of dipolar interactions presents, nq¢0,

the calculated pattern will be different.
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Figure 1 (continued)



Pigure 2. The complete powder line shape at two field strengths for the
eight orientations calculated in Fig. 1. (a) o=35.0, B=77.0
(b) 0=0.0, £0.0 (c) &=0.0, B=45.0 (d) o«=0.0, B=90.0 (e)
=45.0 ,B8<90.0 (f) 0=60.0 ,AB=90.O (g) «=90.0 ,8<90.0
(h)®-90.0 , $=45.0.
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Figure 3.

Field dependent critical frequencies for the second order
quadrupolar vs the shift interaction are calculated from [68]
and the zeros of the gr;dient from [69]. This case is only
applicable to the central transition of half integer
quadrupolar nuclei. The shift anisotropy and the guadrupole
constant v are expressed in units of KHz. The complete
powde; line shape calculation using [21] at three field
strengths are shown at the left side of each critical
frequencies curve as a comparison (see text for detail). The
seven orientations calculated are: (a) o=0.0 ,B8<0.0 (b)
o=0.0 ,B=45.0 (c) 0.0 ,B-90.0 (d) o=45.0 ,8=90.0 (e) e=60.0
y6=90.0 (f) 0=90.0 ,6=90.0 (g) «=90.0 ,B=45.0.
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Pigure 4. ‘Comparison of the critical frequencies for (e, B)=(0.0, 0.0),
and («, B)=(60.0, 90.0) case for various asymmetry
parameters. (a) n=0.5, nq=0.0, (b) n=1.0, nq=0.0, (¢) n=0.0,
nq=1.d. The rest of interaction parameters are the same as

used in the previous calculation.
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Figure S.

The experimental spectra taken at 56, 100, and 220 Mhz
respectively. The peak at the center of the 56 MHz spectrum
is due to the small amount of water present in the sample.
This has been removed by further drying the sample before
measuring at 100 and 220 MHz. Upfield is to the right. The
major intensity (and the center of mass) is shifted downfield

as the Larmor frequency increases.
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Figure 6.

The critical frequencies of the above spectra as listed in
the second half of Table I are correlated with the magnetic
field. The linear least squares fits are represented by the
solid or the broken lines connecting those points. The solid
line corresponds to the singularities or the steps in the
spectra, while the broken line with larger error represents
the mapping of the shoulder. The interaction parameters as
wvell as the mutual orientation of the two tensors can be

determined by analyzing these curves.
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Figure 7. Complete powder line shape calculated for the three magnetic
fields measured. The calculation uses the result listed in
the first row of Table III. A Lorentzian broadening function
with half width of 3.5 KHz has been applied. The ppwder
average uses 2. x 2. degree mash in both 8, and ¢. The

results are to be compared with the experimental in Fig. 5.
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PART II. A STUDY BY SOLID STATE NMR OF 133cs anDp 1H

OF A HYDRATED AND DEHYDRATED CESIUM MORDENITE
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ABSTRACT

The solid state NMR of 133Cs and lH in cesium exchanged mordenite
has been monitored as a function of dehydration of the zeolite. In the
fully hydrated mordenite, 133¢s (I=7/2) exhibits a single line 64 ppm
upfield of aqueous saturated CsCl. The anhydrous sample exhibits two
major lines of intensities 3:1 with center of mass at -57 and -190 ppm
respectively for Cs under magic-angle spinning. The major intensity is
upfield of the line observed in the hydrated sample. The electric field
gradient parameters for Cs of the anhydrous sample are ezq0=3.1 MHz,
n=0.65 which reduced to e2q0=210 KHz, and n=0 for the hydrated sample.
Assignment for the three sites occupied by Cs in the anhydrous sample
and the corresponding chemical shifts are: site II, -157 ppm, site IV,
-186 ppm, and site VI, -24 ppm after correction for the second order
quadrupolar shift. The static proton spectra decrease in intensity by a
factor of 35 between the fully hydrated and anhydrous sample. While
maintaining a roughly constant width of 6.6 KHz, the shape of the proton
line changes with dehydration. and exhibits an anisotropy in the

anhydrous sample.
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INTRODUCTION

Solid state NMR has been shown to be a useful tool for studying both
the static chemical environments and the dynamic behavior of nuclei in
zeolite.l The nuclei studied in these systems have been predominantly
29$i, 27Al, and 1. 29Si and lH are both spin 1/2 and amenable to
quantitative and qualitative detection by standard pulse techniques.
2741 is a quadrupolar nucleus with spin 5/2, and thus exhibits residual
broadening under rapid sample spinning, and a difficulty with
quantitative detection associated with the magnitude of the quadrupolar
splitting of the outer transitions relative to the bandwidth of the rf
pulse. Nevertheless, its relatively small quadrupole moment allows NMR
to be a useful technique for studying aluminum in, and the dealumination
of zeolites. Cesium is an important promoter in catalysts used among
other reactions fo; the fixation of CO and the production of higher
alcohols. 133Cs is therefore a nucleus that would be useful as a
monitor of the chemistry of these systems. The nucleus has a natural
abundance or 100%, a nuclear spin I = 7/2, and a relatively weak
quadrupole moment of -3.0x10-3/10-28n2, However, its relatively low
gyromagnetic ratio, and the relatively low mole ratios of Cs to zeolite
in standard exchanged catalysts raise questions about the applicability
of NMR of 133¢s for monitoring processes taking place in zeolitic
catalysts. The present work was undertaken to determine the utility of
133¢cs as a nucleus to monitor local chemistry in zeolites and more
generally the local structures around this ion in surface sites.
Specifically the dehydration of Cs doped mordenite has been followed by

tracking the high resolution solid state NMR of 133cs. The broad line
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NMR of lH has been used as ancillary information to verify the model
used in explaining the changes in Cs doped mordenite with dehydration.
The crystallographic sites of Cs in mordenite have been |

characterized by Schlenker, Pluth, and Smith.2 The sites for large
univalent cations are labeled II, IV, and VI, and have relative
occupancies for Cs of 3.78: 1.86: 1.75. Sites II and IV place Cs near
the center of an eight-ring of oxygen, and site VI places the Cs off
center of a six-ring. Although the 8-ring sites II and IV could
accommodate all the cations, occupation is also found for the one sided
coordination site VI. This site indication for II, IV and VI are

equivalent to A,D and E respectively used by Mortier.3
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EXPERTMENTAL

NMR experiments on 133¢s (I=7/2) and hydrogen were performed at
28.877 MHz and 220 MHz respectively in a home-built pulsed NMR
spectrometer which has been previously described.4

The Cs exchanged mordenite was prepared by repea&ed contact of 20%
of Na mordenite with 250 mls of 1M CsNO3 at 90°C, until essentially
complete removal of Na was effected. The Na content of the zeolite was
monitored by atomic absorption analysis for Na after zeolite dissolution
using HF. X-ray diffraction analysis before and after ion exchange
confirmed that no loss in crystallinity occurred during sample
preparation. Samples with varying degrees of hydration were prepared as
indicated in Table I.

The frequency of the sample spinning during NMR experiments on 133¢s
vas varied from 3.6 KHz to 5.2 KHz to distinguish sideband structure
from the central transitions. NMR measurements on Cs vere taken with
the sample static, and spinning. All spectra of protons were taken
under static conditicns.

NMR spectra of static and spinning samples were all taken at room
temperature. Spin temperature inversion of the preparation pulses was
used to minimize baseline artifacts in the Fourier transformed spectra.
All data were taken with fixed gain of the receiver-A/D chain. The
spectra were normalized to constant intensity for graphical
presentation. The normalization constant was then divided by the ratio
of the weight of the sample compared to the fully hydrated sample in
order to obtain relative amplification factors for each spectrum. For

example, the relative amplification factors of the proton spectra shown-
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in Fig. 1 (vide infra) indicate that the proton signal intensity in the
anhydrous sample was 35 times less than that of the fully hydrated
sample.

Longitudinal relaxation times for Cs in all samples were determined
to be approximately 10 msec, so that a re-cycle rate of 0.1 seconds was
used for accumulating NMR of Cs. Total scans of 65,536 were accumulated
for signal averaging on all samples.

The longitudinal relaxation of hydrogen in the samples varies with
the degree of hydration, the fully hydrated sample having a Ty of less
than 0.05 sec, and the anhydrous sample having a Ty of less than 1
second. The trend of decreasing of T; at room temperature as degree of
hydration increases is consistent with other measurements reported for
univalent cation exchanged zeolite A3 Re-cycle rates of greater than
five T were used in accumulation of proton NMR. 10,000 scans were
taken in each set of accumulations in the proton measurements.

A1l values of chemical shifts of 133Cs are referenced to a saturated
agueous solution of CsCl. The chemical shift of 1§ is referenced to
wvater. The shift scales are expressed with increasing negative values

being upfield.
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RESULTS

The 1 spectra vith increasing degree of hydration are shown in Fig.
1. The NMR spectra of 133¢s with increasing hydration are shown in
Figs. 2 and 3 for samples under static and magic-angle sample spinning
(MAS) conditions respectively.

The relative intensities of the lH spectra give an approximate ratio
of the water content in the dehydrated to that in the fully hydrated
samples. The proton line width decreases with dehydration and gives
indication of inhomogeneous dipolar broadening as in sample B. Upon
further dehydration, the line width gradually increases and develops an
asymmetry at full dehydration. This trend in the change of the 1y
spectra vith dehydration is consistent with that observed for different
degrees of hydration for the cation exchanged zeolite A%

The quadrupole coupling constant e2q0 can be measured from the
singularities of the first satellite transitions (3/2,1/2) and (-1/2,-
3/2) by the following equation:7r8

3eng

1
Bq= l&I(ZI—l) .(m_i)‘(lin) [1]

where By equals the splitting of the singularity of the first satellite
m=3/2, or m = ~1/2 from the center of mass. These singularities
correspond to the orientation with the principal axis of the e.f.g.
tensor being perpendicular to the external magnetic field.’ Equation
[1] implies that splitting Bq depends also on the asymmetry parameter N
of the electric field gradient (e.f.g.) tensor. For each of the m=3/2

and m=-1/2 transitions there will be two critical frequencies if n#0.
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These will coincide when n=0. The term (1 + h) corresponds to a
shoulder of the satellite, which is not visible in the powder spectrum.
The term (1 - N) corresponds to an infinity in the unbroadened powder
spectrum; it is this singularity which is measured in the experimental
spectrum which we listed in the first row in Table II. The negative
sign is therefore chosen when utilizing the first satellite transition,
and a nonzero of n to calculate equ.

Both the static and MAS spectra show a consistent trend of increase
in quadrupole coupling constant with extent of dehydration. This is to
be expected, as the electric field gradient would be expected to become
more intense as the spherically symmetrical first coordination sphere of
waters is removed. As the dehydration proceeds and the coupling
constant becomes larger, the satellite transitions become more removed
from the central transition, and less intense. Thus, the accuracy of
determining the coupling constant from the position of the satellite
transition decreases with increasing extent of dehydration.

Since calculating quadrupole coupling constant, equ, from the first
satellite singularity depends also upon the asymmetry parameter, n, a
value be determined from the satellite splitting alone. In general, a
line shape fitting is required to determine bcth equ and n value. In
principal, this can be performed for either the satellite or the central
transition under MAS.

For the highly hydrated samples, i.e., those with well defined
satellite splittings, the central transition is narrower than the
dipolar broadening and furthermore the transitions from Cs in sites II,

IV, and VI are too closely superimposed. To perform a line shape
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fitting to a superposition of central transition powder patterns under
MAS is not practical in this case. Recalling the fact that n vas found
to decrease with increased water content due to the spherically
symmetrical first cooédination sphere of water, the values of eZqQ for
samples A, B,and C were determined from the first satellite transition
alone, assuming a value of zero for n.

As the dehydration proceeds, the splitting from these three sites
separate, and it is possible to perform a meaningful fit of the central
transition MAS spectra to a superposition of theoretical powder
patterns. The fitting of the central transition in samples D,E, and F
(discussed further in the Discussion section) yielded values of both
equ and N. As a comparison, the n value was again used to determine
eZqQ using the observed first satellite transitions from [1] for these
samples as well. The larger deviation observed for sample F is due to
the larger uncertainty present in estimating the first satellite
splitting as mentioned previously.

The values of the guadrupole coupling constant, equ, determined
both from fit of the central transition and from the splitting of the
first satellite, are listed in Table:-II. Also listed are the
experimentally observed values of the first satellite splitting, Bq, and
of n inferred from the fit to the central transition of samples D,E, and
F.

The second satellite transition (5/2,3/2) and (-3/2,-5/2) cannot be
observed for Cs in the anhydrous sample, and is just observable in the

fully hydrated sample where the quadrupolar coupling is the weakest.
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The central transition line width (600Hz) for the fully hydrated
sample A in the MAS spectrum turns out to be three to four times larger
than that calculated by using the quadrupole coupling constant estimated
from the position of the satellites. This residual experimental
broadening for sample A may be accounted for in three ways: (a) The
homogeneous broadening of the Cs nucleus due to heteronuclear dipolar
coupling to 2751, (b) an inhomogeneous distribution of the e.f.g. or the
isotropic chemical shift throughout the sample,9 {c) a nonzero value of
the asymmetry parameter N, yielding a magnitude of equ larger then 210
KHz.

The center of mass of a quadrupolar nuclei obtained by zeroing the
first moment is a combined effect of the shift interaction and the
second order gquadrupolar interaction.10:11 Hence the true isotropic
chgmical shift, o.g, does not coincide with the center of gravity of the
spectrum. A correction for the second order quadrupolar shift, 9gs?

should be made once the quadrupole coupling constant eZqQ is determined

by the relation:1l

[+ =0 + O
cm cs  gs

23 %0 2 [1(z+1)-9m(n-1)-3 n?
Gs(M= 75 ( 307 (1+ 39

0 12(21—1)2

2 2
eqd 2 ., nh, .
)% (1 D)

+h

70 ¢ 2]
Where o.n is the center of mass of the central transition. The

multiplification factors f of the quadrupolar shifts are summarized in

Table III for different transitions of half integer spin up to I=9/2.
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The centers of mass of each peak in the 133¢s Mas spectra are
obtained through zeroing the first moment of the center band of the
half-half central transition. These values with different degrees of
hydration are listed in the first two rows in Table IV. The second
order quadrupolar shift s for the central transition of 133cs (I=7/2)
is calculated from [2] using v)=28.87 Mhz and the best measured value of
equ (Table II). The values of o.g are then obtained from g.g=o.pg- qs*
These values characterizing the NMR spectra of 133¢s in the samples of
the present work are listed in Table IV. All shift values are tabulated

with increasing negative values being upfield.
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DISCUSSION

In the fully hydrated Cs mordenite the Cs* ions can be considered as
floating in the zeolite water, the coordination sphere of Cs* thus being
occupied by water molecules. This has the effect of placing all the Cs*
ions in the same symmetrical nearest neighbor environment and thus of
all Cs* ions having the same isotropic chemical shifts. Dehydration
results in the loss of the hydration water and the subsequent migration
of Cs* ions to sites II, IV, and VI of the zeolite lattice where
coordination is now provided by the framework oxygen. Because of the
differences in geometry, coordination number, and because of the
replacement of water oxygens by lattice oxygens, different chemical
shifts are expected for 133¢s in the different cation positions. In the
present study, a detailed analysis of the 133¢cs nMR spectra for the
anhydrous sample is greatly facilitated by the X-ray diffraction work of
Schlenker, Pluth and smith? who have described in detail the geometry
of the Cs* ions located at the eight-ring sites II, IV, and the six-ring
site VI wvith the site occupancy in fully exchanged Cs mordenite. This
picture fits with the observed single sharp peak in the fully hydrated
sample while the anhydrous sample exhibits individual chemical shifts at
different sites.

As the degree of hydration increases the quadrupole constant e20q
gradually decreases from 3.1 MHz to 210 KHz for the fully hydrated
sample. This trend is seen in Fig. 2, where the first satellites for
samples A, B can be observed, and the satellite splitting gradually
increases with dehydration. The spectrum under MAS further confirms

that the residual broadening is mainly due to the second order
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quadrupolar interactions. The broadening changes the observed chemical
shift from 1.2 KHz for the anhydrous sample to 600AHz for the fully
hydrated sample.

In the fully anhydrous sample, there appear two main peaks from the
Cs spectrum under MAS. The peaks have ratio of 3:1, indicating that
there are at least two different Cs populations in the structure. The
higher field peak (-157 ppm) under MAS appearing in the anhydrous
compound has been fitted by a superposition of two central transitions
with an intensity ratio of 2:1. The fit is shown in under the upfield
peak in Fig. 4. The parameters obtained in this fit are: the asymmetry
parameter, nh = 0.6; the quadrupole coupling constant, equ = 3.1 MHz;
and the isotropic values of the two shifts in the upfield peak, o.5 =
-157, and -186 ppm.12 The choice of single quadrupole coupling constant
and asymmetry parameters for Cs at the two sites is based upon the fact
that the two Cs species resides in similar environment. This choice
reduced the parameters and greatly simplifies the calculation.

The downfield peak was fitted to a single central transition powder
pattern under MAS. The parameters are: n= 0.7, eZqQ = 3.2 MHz, and
ocg = -32 ppm. The asymmetry parameter of the e.f.g. tensor is only a
rough estimate. This cannot be determined unambiguously through line
shape analysis of the MAS spectra due to the signal-to-noise ratio
limitations and the possible inhomogeneous distribution of these
parameters.7’12 Although the quadrupole coupling constant is expected
to be much different from the -157 ppm species, this is not observed,
however. This results may also explains that only one first satellite

singularity is found for sample F.
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To exclude the possibility that the upfield peak of the fully
anhydrous sample might include the overlap of the rotational side bands
from the low field peak (-24ppm), the spectrum was recorded for several
different rotational frequencies. Invariance of the line shape with the
varying rotation speed supported the idea that the upfield peak is a
inhomogeneous superposition of two peaks but not overlapping of
rotational side bands.

Considering the information from x-ray data that a Cs ion at site VI
is coordinated only on one side of the six ring, while Cs in sites II
and IV are only slightly off center of an eight-ring, assignments for
the three Cs nuclei are made as shown in Table V.

The proton spectra and the T; relaxation time for samples A-F also
show interesting changes which are consistent with the above proposed
mechanism of hydration. The trend of decreasing line width with
decreasing water contents can be attributed to the chemical exchange
motion of hydroxyl and water protons. As the water content decreases
the hydroxyl group and water molecules tend to be less mobile and Tp
increases.13:14 The further broadening of the 1y spectra for the
anhydrous sample can be due to shielding anisotropy plus an

inhomogeneous distribution of the chemical shifts.
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CONCLUSION

133¢cs is shown to be a useful nucleus for monitoring the local
environments in mordenite by NMR. The NMR spectrum of 133¢s in cesium
exchanged mordenite indicates that the e.f.g. tensor increases with
decreasing water content. The quadrupole coupling constant increases
from 210 KHz for the fully hydrated sample to 3.1 MHz for the anhydrous
sample. The static spectra increase in line width from 1.2 KHz for the
fully hydrated sample to 6 kHz for the anhydrous sample. Under MAS, the
anhydrous sample shows two peaks, with relative intensities of roughly
1:3. Two different sites are clearly observed in the anhydrous sample
with center of mass of the peaks at -191.0 ppm and -57 ppm. The
assignment of the peaks to Cs locations is made on the basis of the
structural difference of the six-ring coordination site VI from the
eight-ring sites II, and IV. After correcting for the second order
quadrupolar shift the down field peak, -24ppm; may be attributed to site
VI while sites II and IV with similar structures yield similar chemical
shifts at -157 ppm and -186 ppm (see Table V). In the fully hydrated

sample all three sites possess an identical isotropic value of -64 ppm.
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Table I

Conditions of sample preparation

Sample Calcination Temperature, °C/Time
A Fully hydrated
B 100/8 hours
C 320/2 hours (deep bed in NMR tube)
D 320/4 hours "
E 450/4 hours "
F 450/10 hours (shallow bed in 10 mm bulbs)
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Table II

The quadrupole coupling constant and the asymmetry

Sample F E D C B A
Bq(KHz)2  58. 46. 39. 32. 12.8 7.5
e2qQ(MHZ)P 4.6 2.6 1.8 0.9 0.36  0.21
e2qQ(MHz)C 3.1 2.1 1.7

e 0.65 0.5 0.4 0.0 0.0 0.0

2. The first satellite splitting from the center of mass of the
static sample.

b calculated from {1] and Bq assuming n value obtained from
lineshape simulation for samples D, E, F and n= 0.0 for samples 4,
B, C.

C Obtained from the line shape simulation of the MAS center band
of the central transition.
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Table III

Multiplication factor, f, of Quadrupolar shift in eq. [2]2

172 3/2 5/2 7/2 9/2
I
3/2 1/3 -2/3
5/2 8/100  -1/100 -28/100
7/2 15/212  6/212 217212 _66/212
9/2 247942 15/942 -12/942  _57,/942 _120/942

8 (mym-1) and (-m+1l,-m) yield identical 9s-
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Table IV

NMR parameters of 133¢cs of Cs exchanged Mordenite

Sample F E D o B A
Oem(PPM)2 -57 -61.  -63.  -65.  -65.  -64
-190.0 -195.0 -198. X x X
cqs(ppm)b -33.  -15.  -10.  -2.5 0. 0
6os(PPm)© -24.  -46.  -53.  -62.5 -65.  -64.
-157. -179. -188. bd X X

4 The center of mass of the central transition.
b The second order quadrupole shift calculated from [2].

C The isotropic chemical shift value.
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Table V
Assignment of 133¢s shift value of Cs exchanged Mordenite

site? II Iv VI

oes (ppm) -157.0 -186.0 -24.0
area (NMR) 2 1 1

population(X-ray) 3.78 1.86 1.75

2 Site indications are the same as those in reference 2.
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Figure 1. NMR spectra of 18 in Cs exchanged mordenite as a function of
degree of hydration. Bottom, spectrum A, is the fully

hydrated sample. Top, spectrum F is the anhydrous sample.
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Pigure 2. Static NMR spectrum of 133¢s in Cs exchanged mordenite, as a
function of degree of hydration. Bottom, spectrum A, fully
hydrated sample. Top, spectrum F, anhydrous sample. Note

the satellite transitions visible in spectra A and B.
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Figure 3.

MAS spectra of 133¢cs in Cs exchanged mordenite as a function
of degree of hydration. Bottom, spectrum A, fully hydrated
sample. Top, spectrum F, anhydrous sample. Sample rotation
speed in KHz is indicated at the right of each spectrum.

Starred (*) peaks are spinning sidebands.
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Figure 4. Fit of the MAS peaks of 133¢s in anhydrous Cs exchanged

mordenite to a superposition of three peaks. See discussion

for the fitting parameters.
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PART III: EXCHANGE DYNAMICS OF 23Na AND THE STRUCTURAL
INCOMMENSURATION IN NaMo,Og: NMR DYNAMIC LINE SHAPE

FOR SECOND ORDER QUADRUPOLAR CENTRAL TRANSITION
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incommensuration in NaMo40g: NMR dynamic line shape

for second order quadrupolar central transition
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ABSTRACT

Sodium nuclei in NaMo,Og show dynamic motion as evidenced by the
change of the asymmetry parameter of the 23Na central transition in the
variable temperature NMR. The nonaxially symmetric electric field
gradient observed in the slow motion limit implies that the preferred
occupation of the sodium nucleus is not at the center of the tetragonal
oxygen cage. This fact explains the unrealistic thermal ellipsoid for
sodium observed in the room temperature X-ray diffraction. Dynamic NMR
line shape simulations for the second order central transition were
performed based upon models of four site exchange, and all site random
exchange models. Both models yield indistinguishable results with an
activation energy E; of 1.95 Kcal/mole.

The anomalous upfield shoulder in the central transition is found to
be related to an unusual structural incommensuration. The transition
temperature at T, = 140 K is evidenced by jump-discontinuities in both
the temperature dependence of T; and the quadrupole coupling constant,
equ. Using the "plane-wave" approximation to describe the structural
incommensuration, the appearance and the gradual downfield shift of the
anomalous shoulder can be satisfactorily fit to the data. From the
temperature dependence of the quasi-continuous frequency distribution
associated with the incommensurate structure, the anti-ferroelectric to

para-electric transition temperature, T; is estimated to be 320 K.
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INTRODUCTION

NMR studies of quadrupolar nuclei have been of recent interest.
Most of these studies concentrated upon half integer quadrupolar nuclei
in the Zeeman region (nuclei with relatively weak quadrupole coupling
constants), where the cent£a1 transition, dominated by the second order
perturbation of the electric field gradient upon the Zeeman levels,
produces a characteristic line width in the range of few kHz.1-8
Valuable information such as the isotropic shift, the electric field
gradient (e.f.g.), and the asymmetry of the e.f.g. tensor can be
obtained from studying the line shape. Combined with the magic-angle
and variable-angle sample spinning techniques,9'13 the studies can be
extended to more complicated systems where quadrupolar nuclei possess
different e.f.g. principal values. These studies and calculations are
‘however limited only to rigid structures.

In this article is studied for the first time the second order
quadrupolar powder line shape under the influence of multisite dynamic
motion. Of particular interest in the current studies is the effect of
coherent, discrete site jump motion upon the central transition line
shape to second order in perturbation theory. The fundamental formalism
in calculating the dynamic NMR line shape associated with the second
order quadrupolar interaction and the spatial dependence of the
characteristic frequencies required in the dynamic motion are also
discussed. From these line shape studies, the following can be
revealed: (a) the type of motion; (b) the activation energy of the

dynamic process; and (c) the equilibrium location of sodium in NaMo,Og.
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The sample used in the current study is the ternary molybdenum oxide
NAM0406.14715 This compound consists of infinite chains derived from
octahedral metal cluster units jointed at opposite edges. A three
dimensional view of the NaMo,Og structure along the C axis is given in
Fig. 1, where oxygen atoms bridge the outwardly exposed edge of the
octahedral molybdenum metal units and bind one chain to another through
Mo-0-Mo bridges. From this figure, it is seen that the sodium ions are
stacked along the ¢ axis in tunnels created by four metal-oxide cluster
chains cross-linked by metal-oxygen bonds. Each Na* ion occupies a site
of tetragonal coordination symmetry surrounded by eight oxygen atoms at
a distance 2.74 A. At room temperature the resistivity of the single
crystal along the needle axis is ca 10-4 ohm-cm, indicating that the
system is a moderately good one dimensional electrical conductor.

The principal values of the thermal ellipsoid15 for sodium are
B11=B22=9.0, B33=2.9, where 11 and 22 axis are coincident with the a-b
plane and the 33 axis is along the ¢ crystal axis. On the other hand
1131n in InMo.0g. isostructural with NaMo,Og, exhibits a thermal
ellipsoid with principal values of: B11=B22-=1.1, B33=3.1. Both nuclei
possess comparable 33 principal values, but sodium exhibits an
unrealistically large anisotropy in the 11 — 22 plane. The origins of
this large thermal anisotropy, with prolate shape distribution in the
a-b plane of the unit lattice are possibly related to the following
behavior: (a) a large amplitude of sodium motion in the a-b plane. The
thermodynamic stable occupation of the sodium nucleus may either be in
the center, or off-center of the tetragonal oxygen; and (b) a structural

incommensuration or some periodic lattice distortion of this quasi-one
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dimensional channel compound.

The presence of a long range displacement or a superlattice
structure is usually reflected by the appearance of satellites in X-ray
diffraction studies of the solids. Since an X-ray diffraction pattern
is an ensemble average of the lattice over time long compared to lattice
motion, a local displacement and a long range incommensuration of
superlattice structure are hard to distinguish, if the anisotropic
motion of the sodium nucleus has not been completely frozen. NMR
spectroscopy, on the other hand, is sensitive to both the local dynamic
behavior, and at the same time the line shape is subject to the quasi-
continuous distribution of the interaction constant due to long range
structural incommensuration. NMR offers the promise of discerning local
structure and long range displacements. In the latter part of the
study, a possible structural incommensuration in this channel compound
is examined. A simple calculation is performed for the powder spectrum
based upon the plane wave approximation of the incommensurate structure
and the resulting quasi-continuous e.f.g. distribution to account for

the observed NMR spectra.
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THEORY

NMR spectra line shapes subject to nuclear motion have been widely
studied for systems governed by interactions described by first order
perturbation theory. Examples include shift anisotropy, inhomogeneous
dipoiar broadening, and the effect of an electric field gradient upon
the I=1 quadrupolar nucleus, deuterium in particular. Since second
order terms also contain nonsecular components, describing the time
dependence in stochastic processes becomes more complicated. The
applicability of the formalism used for the first order interaction in
the dynamic studies for systems governed by second order quadrupolar
perturbation will be examined. Another major concern will be in the
determination of the spatially dependent transition frequencies of each
well defined "site" associated with a second order perturbation in the
dynamic system.

In this work is considered a half integer quadrupole spin
experiencing dynamic exchange motion. In the following, the matrix
formalism describing the discrete multisite dynamic motion governed by
both the second order quadrupolar interaction and the shift anisotropy
are discussed.

The operator llg is introduced as the generator of the Markov
process, which describes the rate of the mass transfer within the n-site
dynamic ensemble. The orientation, R representing the different sites
available in the discrete site exchange can be defined by the Euler
angles as will be explained later. The n by n matrix has elements nij=

1/Tij° The Stochastic Liouville-Von Newman (SLE) equation written in
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term of superoperator notation becomes: 9,16

-

p(2,) = (-iH_(2,t)+1) |0(2,)) [1]

The first term is the ordinary Liouville-Von Newman equation for the
stationary system. This equation implies that the evolution of the
density matrix is governed by an energy conserved oscillation term
represented by the effective Hamiltonian, Hg, and an energy dissipation
(damping) term originating from nuclear motion.

The effective Hamiltonian for each distinctive site, H(%;), is
obtained by average Hamiltonian theory over the fundamental cycle time
of one Larmor period 2w/ uwy. In the current studies, only the averaged
term for the shift anisotropy, C, and the quadrupolar coupling, Q, is
considered. To first order, the Magnus expansionu'18 of the effective

Hamiltonian for site i becomes:
B_(2,)= {0 (2)+v{% 9+ v{V(e)) (2]

From the SLE equation, the master equation for discrete n-site
dynamics can be derived assuming a Markov dynamic process and the slow
motion limit.%,19 The spin magnetization in this limit can be shown to
follow the nuclear motion adiabatically. The magnetization, following
the derivation of Abragam, is therefore equal to:19

~ o~ o~

ﬁﬁ(t): (1w I-R)-H( ) [3]

This expression under the Markov approximation is independent of the
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order of pertubation in [2].
The transient signal G(t) under dynamic motion can therefore be

calculated from [3] after summing the magnetization over all distinctive

sites.

~ o~ o~

c(t)=I-M(t) = T exp [(i(rI-R)t]-T [4]

Here I is an unit rov vector multiplied with ®(t) to obtain the sum.
The row vector, W corresponds to the population weight function. The
dynamic matrix, T characterizing the type of motion, gives the off
diagonal elements in the argument of the complex exponential that will
finally produce the dynamic "averaging" of the static NMR spectra. The
elements in the diagonal matrices w and R correspond to the
characteristic frequencies, w(?;); and the spin spin relaxation time,
T9; respectively, for each distinctive site, i. All matrices and
vectors in [4] are dimensioned by the total number of sites, n.

In the following are determined, the spatial dependence of the
characteristic transition frequencies w(®;) for each site.

The Magnus expansion in [2] is written specifically for the shift
and the quadrupole interactions. This average Hamiltonian becomes:

(0), (0) 2 1 2,2 .02 ;2
Ve '+ o R 4 M Ry 43 (31,-17) [5]

. 3eQ
vith — wy=vBy  and 4= ZTRIDR

The next term in the Magnus expansion is obtained after evaluating
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the commutators and the double time integral. For the quadrupolar

interaction this becomes:

2

U % 10212472 ge2 212,,:2 2
Vo = Su 2- (R |7(4T7-8I-1)T - R} [T(2I°-215-1)1,
16

2 .2 ,..2 2 2
+ T3 Ry [RT (4I5-41+ 1) - R] (4IG+4I+1)I ]

+ 46 RARZ(T+ DI + B2 (1-DI] ) (61

The above results are obtained by assuming an oscillation of the
spatial dependent terms, R% slow compared with the Larmor frequency.
Evaluated in the Zeeman frame, the resonance frequency of any single
quantum transition associated with the i-th site can be calculated

straightforvardly from the effective Hamiltonians:

© (2= =2 (<nlE (9)) Im> ~<n-1]F_(9,) [n-1) [7]

the explicit expression can be obtained when the spatial dependence of
the irreducible components R%, and eigenvalue of the spin operators are
determined. The resulting characteristic frequencies for the first two

orders according to [5] and [6] becomes:

oD (e, 8,788 = 45 [4BE(CSA) +5 wﬁ R3(QDP) (2n-1) 8]
2
oV (e, 8,,7,,80) = Yo 121 &S aoe) |* -, [R5 (a0p) |] (9]

9%
with M1= 4I(I+1)-24m(m-1)-9

and M,= 4I(I+1)-12m(m-1)-6

2
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To simplify the calculation, the off diagonal elements in [6] have
been completely neglected in deriving [9]. This assumption allows us to
use the Zeeman states as basis functions in evaluating the spin eigen-
values, and dramatically reduces the complexity of the line shape
calculation. The validity of this truncation will be discussed later.

In [8] and [9], the spatially dependent terms, R% have not been
determined. To obtain this quantity, two transformations in the dynamic
system need be performed (see Fig. 2). First, a rigid, time independent
cartesian frame, (Xg,YR,Zg) in the molecule or lattice frame has been
conveniently chosen. The transformation from the principal axes (PAS)
(X', Y, Z') of the interaction tensor at site i to the reference frame
R is characterized by the Euler angles (ej, By, vi). For an axially
symmetric tensor, either («, 8, 0) or.(O, B, v) are sufficient to
characterize the orientation of the interaction. For in-plane motion,
the simplest choice of the reference frame is the one that containing
the jumping axis, 2Zg, in which the nuclei jump in the XR-Yg plane of
this frame.

The second transformation is identical to that performed for a
static sample and accounts for the relative orientation of the R frame
in the crystal with respect to the Zeeman quantization axis system. Due
to the axial symmetry of the laboratory frame (there are no difference
in the X and Y direction of a well shimmed magnetic field), two Euler
angles (O, ¢) are sufficient to characterize the transformation.

The irreducible components at each nuclear site, i after the double
frame transformation are expressed through the Wigner rotation

matrices20 as follows:
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2)

’!’ml

2 . 1(2) ( A
Rm(ai’ﬁi’yi’e’ $)= %1 Dm,’m(O,e, ‘#)“)%n Dm (ai’ Si’Yi)DZm" [10]

X represents either the shift or the quadrupolar interaction in the
current study. The definition of the rotation of the Euler angles are
identical to that given by Edmonds2l vhere the reduced rotation matrices
dyr ,p(B) are related to Jacobian polynomials. The related irreducible

spherical components 92% in the principal axis system are known to be:

A R
=2

P20 [11]

vhere the anisotropy &=o,,-0y, asymmetry n=(°yy‘°kx)/°2z'°0’ and the
isotropic value op= (oyy+oyy+dz;)/3 are defined and oyy, oyy, gz are
the three principal values of the interaction tensor. For the e.f.g
tensor, the elements oj; = egjj, and therefore the trace oy is zero.
The convention |qz;|>[ayy |>laxx| as defined by Haeberlen?Q is used in
the follwing treatment. Antisymmetric elements that yield off diagonal
terms in the Hamiltonians are neglected. In the appendix, the explicit
expressions of the irreducible tensor components, R% after a double
frame transformation, which will be used in the line shape calculation,
are tabulated.

In the presence of two or more interactions, the principal axes are
in general oriented independently of each other. This fact might imply
that a triple frame transformation is required in order to describe the
mutual orientation between interactions and the molecular frame. This

can be avoided by utilizing the common rigid reference frame, R, defined
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previously. To simplify the discussion, consider the two interactions
being A and B, with relative orientations as shown in Fig. 2. For the
first interaction, the transformation characterized by the Euler angle
(e, Bi» vi)a, orients A into the reference coordinate, R. A second
transformation to the laboratory frame is characterized by angles (0, 6,
¢). The second interaction, B, will orient at different angles (oj, 8,
vi)p vith respect to the common and fixed cartesian coordinate system,
R. These angles are chosen to maintain the mutual orientation between
tensors 4 and B. The second transformation for B, characterized by (O,
6, ¢) is performed identically as for A. The characteristic frequency
o(2;) is finally obtained by summing over all the transition frequencies

in [8] and [9] after the above double frame transformation.



121

EXPERTMENTAL

The NMR spectra were taken at three different magnetic fields with
23Na resonance frequencies of 14.8, 58.23 and 92.3 MHz. The spectra
were taken on a home-built spectrometer similar to that described
previously.22 Variable temperature experiments performed at 58.23 MHz
used a home-built cryogenic system and a Scientific Instrument
temperature controller. Variable temperature experiments performed at
92.3 MHz used an Oxford Instruments cryogenic temperature control
system.

The sample chamber temperature was controlled by a flow of liquid
helium or liquid nitrogen. A Constantan vs Alumel thermocouple
monitored the sample temperature to an accuracy of +1.0 K. The lowest
stable attainable temperature was 49K. Below this temperature, the rf
coil began to arc-discharge in the helium gas.

The T measurement was obtained through progressive saturation of
the transient signal after a string of w/2 pulses separated by variable
spacing T. These values of Ty ranged from =6 msec at 77K to =20 msec at
room temperature for sodium. A recycle time of 160 msec was therefore
used at all temperatures.

An Andrew-Beams type rotor was used in the variable-angle spinning
and MAS experiments at 58.23 MHz. Spinning speeds varied from 4.2 kHz
to 5.4 kHz to differentiate the rotational side bands.

Tuning of the spectrometer was achieved using 7M aqueous NaCl. w4
nominal pulse widths were used at all fields, following the (I+1/2)
scaling relation?3 for weak quadrupole nuclei. Experimentally, this

pulse also yielded the maximum signal.
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A 4.0 mm o.d. teflon tube was used to contain the sample instead of
the pyrex glass tubing which contains sodium. To avoid interference of
the 83Cu resonance from a copper coil, silver wire was used in
constructing the rf coil in the static, the spinning and the variable
temperature NMR probes. Although no consistent background signal was
observed, background scans were still taken for each variable
temperature measurement.

The receiver dead time and giant pulse breakthrough was reduced to
5.5 u sec, after series L-C circuits were inserted between each stage of
the video-amplifier. The linear phase error produced by the truncation
of the initial time decay is numerically corrected by a linear phase
correction after each Fourier transform of the spectra.

The NaMo,0g samples were supplied by C. Torardi and R. E. McCarley.
Detailed descriptions of the synthesis and the structural parameters of

the compound are given in references 14 and 15.
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RESULTS and DISCUSSION

Determination of the interaction parameters

The parameters of each individual spin interaction governing the
sodium nucleus are determined first in this section. Details of the
variable temperature NMR line shape studies will be discussed in the
latter section.

From the crystallographic structure, d(Na-Na) is estimated to be 8 A
and d(Na-Mo) is = 6. The Mo nucleus has a relatively weak quadrupole
moment and small gyromagnetic ratio, while the nucleus, 160, the closest
nucleus to sodium is spin zero and the natural aboundance of the I= 3/2
isotope 170 is only 0.372 %. Under these circumstances, sodium can be
considered as an isolated spin. The two major interactions governing
sodium are the chemical shift anisotropy and the electric field gradient
interaction. Homonuclear and heteronuclear dipolar interactions can be
neglected.

The parameters of the quadrupolar interaction of Z3Na in NaMo,0g are
first determined by variable- and magic-angle sample spinning (MAS) At
58.23 MHz and 298 K. The MAS line shape of the center band of the
central transition shows the split that is characteristic of an axiaily
symmetric e.f.g. tensor (Fig. 3). A simulation of the central
transition line shape under Masl0,11,12 44 superimposed on the
experimental spectrum in the inset of Fig. 3. In the calculation, the
quadrupole coupling constant (QCC), eZqQ = 1.58 MHz, the asymmetry
parameter N=0.2 and the isotropic shift o.g= -36.3 ppm as listed in

Table I. The discrepancies between the calculation and the experimental
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data are due to the nuclear motion and the interference of the satellite
transition side bands.ll

Room temperature NMR spectra taken at three magnetic fields are
shown in Fig. 4. Approximate parameters of the shift interaction have
been determined by mapping the singularities of the spectra taken at
three different magnetic fields. The singularities in the downfield
portion follow an inverse field scaling relation. This implies that the
shift interaction, linearly proportional to the field, is much smaller
than the second order quadrupolar interaction. Notice that the inverse
relation does not apply to the upfield shoulder and is completely absent
for spectra taken at 14.82 MHz.

The center of mass o, has been shifted from the true chemical shift
value due to the second order quadrupole interaction.24:23 The second
order quadrupolar shift, dgs can be calculated from the coupling
constants and the asymmetry. Written specifically for spin I=3/2, the

constant F equals:24

2 Z
_ =3 .90 .2, n
F= ) ( - ) (1+3) [12]

The second order quadrupolar shift s equals -F/3 for the central
transition and 2F/3 for the satellite transition. The values of the
measured center of mass, the calculated quadrupolar shift and the
corrected chemical shift are listed in Table I. Also shown are the same
parameters obtained from the MAS experiment. The isotropic chemical
shift is less accurate at low fields due to the fact that higher order
perturbations become important and larger errors occur in evaluating the

first moment of the broader spectra. The averaged value of o, g=-22+5
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ppm referred to the saturated NaCl aqueous solution is obtained.

Variable temperature NMR

Variable temperature measurements at 58.23 MHz are shown in Fig. 3.
The spectrum is a single peak at 78 K and gradually splits into two
peaks which continue to sharpen as the temperature increases. A third
peak appearing at the high field side of the major resonance also
becomes observable at = 140 K. The exact temperature for this upfield
shoulder to emerge can not be determined. This peak seems to remain at
= 150 ppm to room temperature and then gradually coalesces with the
downfield major component of the resonance as the temperature further
increases. To better study the "anomalous" upfield peak, the
experimental temperature was further raised to 403 K in the VT
measurement performed at 92.3 MHz. The spectrum is shown in Fig. 6 for
several selected temperatures. The major features of the spectrum are
quite similar to that observed at 58.23 MHz, with resonance of the
downfield portion scaled approximately 1.6 times in kHz unit and =2.5
times in ppm units. The tendency of the upfield shoulder to shift
toward the major resonance as the temperature increases is well
illustrated.

The central transition line shape of 23Na changes with variable
temperature from a nonaxial symmetry-like spectrum at 78 K to an axially
symmetric appearing spectrum at room temperature. This behavior may be
due to: (a) the gradual shifting of the equilibrium position from
nonaxial e.f.g. symmetry to an axially symmetric environment as

temperature increases; and (b) the exchange average of the sodium nuclei
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between sites possessing a nonaxially symmetric e.f.g tensor is averaged
under rapid motion and yields an effective axially symmetric e.f.g.
tensor at high temperatures. The first possibility is inconsistent with
the anomalous thermal ellipsoid observed in the room temperature x-ray
diffraction data. The second possibility is examined using an analysis
of the central transition line shape under dynamic motion taken to

second order.

Calculation of the central transition line shape under motion

According to the symmetry of the structure, dynamic motion may take
place between four equivalent but off center of the sodium sites shown
in Fig. 7. Due to the chemical equivalence of these sites, identical
ground state energies can be inferred, hence unit vector for V¥ in [4]
can be assumed. From this model, two different’ types of discrete site
jump motions are considered. The first is that the jhmps take place
only between the nearest neighbors. The other is that the jumps occur
between all four sites. These two motion models are shown in Fig. 7.

In this dynamic system, the reference frame, (Xg, Yr, Zg), is chosen for
convenience with Zg being the motional axis which is parallel to the ¢
axis of the crystal, and with Xg, and Yg axes in the motional (a-b)
plane.

A brief description of the calculation is given. The transient
signal, G(t), related to a specific spatial orientation, (8, ¢) is first
calculated according to [4]. In this calculation, the argument of the
exponential is a nondiagonal matrix. The quantity G(t) is calculated

following the so-called QR transformation?® by diagonalizing the non-
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Hermitian exponential argument. Simplification of the treatment can be
achieved using the analytical expression, [4], associated with either a
simple two site jump,27 or an all site exchange.28’29 For calculating
the povwder line shape governed by a specific type of dynamic motion, the
above procedures are repeated for each random orientation (8, ¢). The
final averaged transient decay is obtained by summing all individual
transient signals associated with one specific orientation after
multiplying by the probability, sin® d© d¢. The powder averaged spectra
is then directly calculated by Fourier transforming the averaged
transient decay. Reference 16 gives further details of different
computational approach.

The dynamic spectra of a quadrupolar nucleus are dependent upon:

(a) the geometry of the distinct sites involved; (b) the orientation of
the e.f.g. tensor at each distinctive site with respective to the
reference frame as characterized by (oy, B4, vi)q; (<) the interaction
parameters; the quadrupole coupling constant equ, the e.f.g. asymmetry
" and the isotropic shift op; and (d) the dynamic exchange frequency.
In the presence of a nonnegligible shift anisotropy, the results will
also be dependent upon the orientation of the shielding tensor to the
reference frame, (oy, B, Yi)cg» the shift interaction parameters, §,
and shielding asymmetry n.g-

In the following, the second order central transition under the
model of a four site exchange with nearest neighbors is considered
first. Calculations for four different e.f.g. tensor orientations under
various exchange frequencies are shown. The parameters e2q0= 1.58 MHz,

Vo= 58.23 MHz and I=3/2 are chosen to be the common parameters.
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In the first calculation, the dynamic NMR spectra calculated to
second order in perturbation theory for an axially symmetric e.f.g. with
orientation (e, By, v1)g = (-90., 90., 90.) is considered. This e.f.g.
orientation in the four sites jump model is shown in case (a) of Fig. 8.
The calculated spectra are shown in Fig. 9(a) for six jump frequencies.
It is seen that in the slow jump regime, the spectra exhibit an axially
symmetric central transition. As the jump frequency increases, the
asymmetry remains as seen from the two peak feature that is
characteristic of the axially symmetric e.f.g., but the effective
quadrupole coupling constant as reflected by the splitting between the
singularities has been scaled by 1/2. The same calculation repeated for
the case, N"=1.0 shows no change with jump frequency and exhibits a
nonaxially symmetric transition. This behavior can be seen from Fig.
8(a) that under all motional frequencies in the Xg-Yg plane, the
effective e.f.g. component gyy and q,, remain unchanged for n=1.0 at
this specific tensor orientation but is scaled by 1/2 for the case n=0.0
in the rapid motion regime. In both cases the asymmetry, n, still
remains constant.

To demonstrate that this behavior is dependent upon the orientation
of the e.f.g. tensor with respect the the molecular frame, the case of a
nonaxially symmetric e.f.g. tensor with orientation (ey, £, Y1)qQ = (0.,
-45., -90.) is considered, and is shown as case (b) of Fig. 8. The
calculated spectra of the second order perturbed central transition are
shown in Fig. 9(b). In the low jump rate regime, the spectra showv a
typical static central transition spectrum, n=1.0. In the high jump

regime, the resulting spectra do not resemble the static spectra with
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any e.f.g. asymmetry.

In the third case, we consider again a nonaxially symmetric e.f.g.
tensor, n=1, with the e.f.g. orientation coincident with the reference
frame, R, in Fig. 8(c). The calculated powder spectra of the second
order central transition under a four site jump model are shown in Fig.
9 (¢). The change from a nonaxial symmetric-like spectrum to an axially
symmetric-like spectrum in the high jump rate regime is again due to the
fact that the components gy, and qyy components are averaged to the
value of (qxx+qyy)/2 in the rapid jump regime. In contrast to the first
calculation performed, the effective quadrupole coupling constants, eZqQ
is not changed due to the motion. This is expected since the g, axis
is parallel to the jump axis and will not be altered with varying jump
frequency. Any change of the quadrupole coupling constant observed
experimentally, therefore, must be due to the interaction between the
lattice and is independent of the dynamic motion of ghe sodium nucleus.

Finally the effects of shift anisotropy are demonstrated in Fig. 9
(d). The parameters for the quadrupole interaction are the same as
those in the previous case. The shift parameters are chosen to be & =
-16 ppm, and N.g= 0.4. The orientation of the shielding tensor is (o,
B1s Y1)es = (0., 0., 0.), coincident with the e.f.g. tensor. These
spectrum (vide infra) most resemble the experimental variable
temperature spectra. Due to the the relatively small contribution of
1.2 kHz shift anisotropy as compared with the = 8 kHz second order
quadrupole residual line width the spectra will be very little dependent

upon the shift orientation, (o3, By, v{)cg in this calculation.
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In the calculation, we use a 3.0 kHz wide Gaussian broadening
function vhich is multiplied with the powder averaged transient decay
before the 256 point Fourier transform. The powder average uses a 4.0
degree mesh in (6, ¢) angles with time increments equal 1/4 where 8 is
the total spectral width (= 20 kHz) desired in the calculation.

From these calculations it is observed that: (a) the experimental
spectra resemble most the fourth case, i.e., q;, of the e.f.g. tensor
being parallel to the jump axis; and (b) the upfield shoulder appearing
in the high temperature region is not predicted by sodium nuclear
motion.

Vith these results as hints to what might be happening with the
sodium in NaMo,Og, an iterative calculation is performed using only the
the downfield portion of the variable temperature spectrum, neglecting
the upfield features for purposes of the zero order fit. To reduce the
variables involved in the iteration, the parameters for the shift
interaction are held constant. The orientations of the e.f.g. tensor
and shielding tensor are identical to that shown in Fig. 8 (d) where the
principal Z axis of the tensors are coincident with the motional Z axis.
The three fitting parameters are n, the e.f.g. asymmetry; equ, the
quadrupole coupling constant; and oy, the isotropic shift.

The results of the line shape simulation are now discussed. The fit
for the dynamic motion of sodium at room temperature for two fields are
shown in Fig. 10. Other then the upfield peak, the calculated downfield
portions of the spectra are compare quite well with experiment. The
major differences for the two dynamic models, i.e., a nearest neighbor

and an all site exchange, appear in the low jump rate region and give



131

indistinguishable spectra when the jump rate becomes higher. To
differentiate the type of motion, detailed studies should be performed
in the low jump rate regime. This is not possible in the current case,
due to the smoothing of the experimental spectra.

A plot of the log of the jump rate obtained from the dynamic NMR
line shape analysis against inverse temperature is linear, as shown in
Fig. 11. Assuming that the activation energy, E,, is independent of
temperature, E;is determined to be 1.95 Kcal/mole from the slope.30

In the line shape analysis, the quadrupole coupling constant eZqQ
shows gradually increased from 1.12 MHz at 78 K to 1.6 MHz at 300 K
vhile the asymmetry parameters maintains constant at n = 0.95: 0.1
throughout the calculation. The experimentally observed change of the
spectra from a nonaxially symmetric at low temperature to an axially
symmetric~-like spectra in the high temperature region is well accounted
for by the calculation.

The strong temperature dependence of the QCC is typical of
quadrupolar nuclei. In Fig. 12 the quadrupole coupling constant
obtained through the fitting is plotted vs. temperature. Although the
temperature dependence of the quadrupole coupling constants need not be
linear, the data seem to be well divided into two linear regimes where
straight lines are drawn through the points to show the differences.
The temperature coefficients, (aequ/aT)p, are found to be 1.5 kHz/K and
3.9kHz/K respectively above and below =140 K. As mentioned previously,
this change is not related to dynamic motion, but rather to either the
change of the equilibrium position of the sodium nucleus or to

interaction with the lattice. The increase in QCC with increasing
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temperature implies that as the temperature increases, the amplitude of
the sodium motion becomes larger and larger, i.e.; the stationary sodium
position moves further and further off center of the tetragonal channel,
therefore experiencing a stronger e.f.g. with motion, even though the
motion results in an averaging of the qyy and Qyy components and
produces a symmetric-like e.f.g.

The study of the temperature dependence of the QCC constants makes
it possible to derive interesting information concerning properties (in
particular, microscopic ones) of the crystals. Qualitatively, from the
different temperature coefficients, (anqQ/ST)p, in the two temperature
regions it can be readily inferred that the internal pressure at the
sodium site differs above and below temperature 140 K. Although the
actual value of the internal pressure is to be determined by combining
vith variable pressure studies, this conclusion already suggests that a
phase transition may take place. A first order phase transition can be
excluded since the change in crystal cohesive energy will be reflected

2 jump of the activation emergy, E_, and hence will show the

jump discontinuity in the Eyring plot (Fig. 11). This behavior is not
observed. The suggested phase transition also accounts for the

appearance of the anomalous peak as discussed in next section.
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STRUCTURAL INCOMMENSURATION

The simulation of the dynamic NMR line shape for systems exhibiting
multisite jump exchange motion correlates well with the downfield
features of the variable temperature NMR spectra taken at 92.32 and
58.23 MHz. The appearance of the upfield peak, however, can not be
explained by the exchange motion models under any combination of
interaction parameters and was neglected in the theoretical calculation
of the dynamic NMR spectra. Several possible sources of this high field
peak are now discussed.

The mutual orientation between CSA and e.f.g. tensors dictates the
shape of the static central transition spectrum, particularly when the
two interactions are of comparable "size".2;3 Hence it seems reasonable
to attribuge the occurrence of the upfield peak to some unique
orientation of the two interaction tensors. After examining the
singularities at the highest field for two oriented interaction tensors
as a function of the magnetic field, it is found that the upfield
singularity is much too large to be accounted for by differing
orientations of the shielding and e.f.g. tensors under any combination
of the interaction parameters. The approximate inverse magnetic field
dependence of the singularities and the measurements from the MAS
experiments also indicate that the effect of the chemical shifts upon
the spectra are relatively small. Therefore relating the high field
peak to the unique orientation between the shift and the e.f.g. tensor
is not plausible.

The satellite transitions, (3/2, 1/2) and (-1/2, -3/2), should be

symmetric about the center of mass according to the first order
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perturbation theory. When the motional frequency becomes large compared
to the splitting between the two satellite singularities, a third peak
emerging around the center of mass of the satellite transitions is
predicted.17 This dynamic phenomenon is similar to that observed for a
shielding tensor and a Pake doublet spectrum where only the firsf order
effect is observed.l6:31 The increasing sharpness of the upfield peaks
as the temperature increases seems to support this behavior. However,
it may be shown that this peak will appear at the downfield side of the
central transition instead of at the upfield side. From data listed in
Table I, for a spin I=3/2 nucleus at vy =58.23 MHz, the second order
quadrupolar interaction shifts the central transition =19 ppm upfield
from the true isotropic value. Hence the center of mass of the
satellite transition should be shifted =38 ppm downfield from the true
isotropic chemical shift. This is to 'say that the center of mass for
the satellite transition should appear = 57 ppm downfield from the
center of mass of the central transition. This conclusion is opposite
to the observed behavior of the upfield peak in so far as the position
and the sign are concerned. For a quadrupolar nucleus with equ = 1.58
MHz and n = 0, the satellite splitting will be = 400 kHz. From the
dynamic line shape simulation, the motional frequency at room
temperature is about 70 kHz. This value is too small to yield extra
peaks associated with ‘the satellite transitions.

The off-diagonal elements in [6] have been neglected in calculating
the characteristic frequencies as shown in [9]. A similar truncation
has also been performed in evaluating the MAS powder spectra.lo

Incorporating the nonsecular terms shows somewhat different results? but
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does not predict any features of the line shape. To attribute the
upfield feature to the nonsecular term in [6] is, therefore, not
plausible. Considering particularly the gradual coalescence of the
upfield peak with the major portion of the spectra as the quadrupole
coupling constant increases with increasing temperature, this
possibility can be excluded.

To attribute the upfield resonance to the presence of an impurity
sodium phase is not in accord with the X-ray powder diffraction of the
sample used in the NMR experiments. Identical spectra are obtained when
repeating the variable temperature measurements using a newly prepared
samples. The inverse field dependence of this peak in frequency units
also excludes the possibility that this peak is due to either extra
sodium phase or the copper background from the probe body.

From the above discussion, it is concluded that:

(1). The upfield singularity does not originate from noncoincident
orientations of the shielding and e.f.g. interaction tensors.

(2). The upfield singularity is not part of the first satellite
transition of sodium nucleus under dynamic motion.

(3). The off-diagonal elements neglected in the magnus expansion,
[6], do not produce the upfield features.

(4). The upfield peak is not due to the impurity sodium phase, or
from copper resonance of the probe background.

There is considerable evidence that the line shape of the wide-line
NMR spectra of quadrupolar nuclei are subject to a random variation of
the local environment of a particular nuclear site due to crystal

defects and internal strains within the crysta1.4’32’33 This local
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variation results in a continuous distribution of the Hamiltonians. The
absorption spectrum is now not only an ensemble average of the random
orientation of the crystallites with respect to the Zeeman axis, but
also an average of the ensemble of the translation parameters where the
interaction parameters are characterized by some distribution function.
Hence the powder spectra are strongly influenced by the random
distribution of QCC, the asymmetry parameter of the e.f.g. tensor, and
the CSA tensor. The calculation accounting for these effects relies
upon: (a) a proper and reasonable choice of the distribution function,
(b) the assumption that the random orientation of microcrystallites and
the parameters distribution through lattice site are independent.
Following this discussion, a calculation is performed using the formulae
proposed by France.33 Ve.consider only the e.f.g. distribution which is
represented by a Gaussian function, i.e., a completely random
distribution. Results show that this distribution only broadens and
smooths the spectrum but does not, under any circumstances, produce
"anomalous" features at the upfield side of the central transition.

This result gives rise to another possibility that the distribution
of interaction parameters may have several local maxima, or represented
by a quasi-continuous function. This type of frequency distribution has
been recently found in the incommensurate insulator such as NaNOZ34
RbZZnC14,35‘37 and Rb22n3r438’39 as well as in the incommensurate charge
density wave (ICDV) system associated with low dimensional conductivity
such as VSe2,40 NbSe?,,“l’42 2H-NbSey43, and Rb.3MoO3.[‘4 For both metals
and insulators, the formation of structural incommensuration is

characterized by a lattice distortion with a periodicity not necessarily



137

being a rational multiple of the fundamental lattice periodicity. The
absence of anomalies in the resistivity measurement®> at the temperature
wvhere the anomalous NMR peak emerges suggests that the phase transition
is not electronic in nature. The transition is therefore attributed to
the mass density incommensuration. To verify this idea, the NMR spectra
governed by structural incommensuration are calculated and compared with
the experiment.

An incommensurate system in either metals or insulators manifests
itself in magnetic resonance by the fact that the resonance frequency of
a given nucleus depends upon the nuclear displacement of the nuclei
relative to each other and the details of the electronic charge density.

The real displacement of the nuclei can be described as:

u = Acos$(x) ) [13]

Using Landau theory,46 the resonance frequency can be expanded in the

Taylor series of the displacement (the order parameter) as

= v0+ alAcos¢(x)+ %-azAzcosé¢(x)+ cen

= V0+ vlcos¢(x)+ vzcos¢(x)+... . {14]

A is the amplitude of the displacement and depends upon temperature as
A= (1—T/Ti)5. B is the critical exponent. The coefficients aj, aj,...
depend upen the crystal orientation with respect to the magnetic field.
To calculate the spectrum, the lattice dependent phase factor, ¢(x),
need be determined. In the commensurate structure, the phase ¢(x) is a
constant for all unit cells. 1In the incommensurate structure, the phase

of the incommensurate wave can be approximated at two limit: (a) the
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"plane wave" limit where the phase ¢(x) is linearly dependent upon the
displacement; and (b) the "soliton" limit where phase is governed by the
sine-Gorden equation describing the formation of a multi-soliton lattice
vhich shows commensurate domains separated by "soliton-like" domain
walls. In the current study, only polycrystalline samples are
available, and the "soliton" effect can not be observed. Therefore, it
is reasonable to use the plane wave approximation and simplifies the
calculation.

Blinc35:37 et al. have shown that when only v is present, the two
edge singularities appear at v-W= +V;, and when only the vy term is
present, the edge singularities appear at vy = 0 and vy. Since value
of cos¢(x) ranges between -1 and 1, the frequency distribution will be
symmetric for odd order terms (vi,v3 etc.) and will be distributed only
on one side of the frequency vy when even order terms (vp,V; etc.) are
considered. In general, a combination of these terms are required. The
calculation associated with a single crystal orientation are shown in
Fig. 13, for various values of vi and vy, V3, and V.

To simplify the calculation of the polycrystalline spectrum
associated with an incommensurate structure, we assume that v; are
independent of crystal orientation. This implies that the resulting
spectrum is a "convolution" of the frequency distribution associated
with single crystal orientations with the commensurate polycrystalline
NMR spectra of the corresponding temperature. The NMR spectrum in the
commensurate phase has been discussed previously. As observed from the
two "edge singularity" features of the calculation shown in Fig. 13,

the extra upfield peak appearing in the experimental spectrum can also
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be predicted as reflected by the presence of the singularity associated
with the incommensurate structure.

As observed from the experimental spectra, the position of the
downfield components remains almost constant with temperature, while the
spacing between the two singularities becomes smaller at high
temperature. This implies that the even terms (v and v;) in [14] are
responsible for the observed behavior of the spectrum. From the unequal
intensities of the upfield and downfield components in the experimental
spectra, it is further inferred that the frequency distribution is
mainly composed of the fourth order term v,.

Based upon these, the NMR line shapes are calculated for various
temperatures. The room temperature spectra taken at 58.23 and 93.32 MHz
as shown in Fig. 14. The parameters used in this calculation are v;=
7.5 kHz, and 5.0 kHz at the two fields respectively. As the temperature
increases, the coefficient v; decreases, and the spacing between the two
edge singularities has been reduced. This, therefore, also reduces the
splitting of the upfield peak from the central portion of the spectrum.
Knowing that the upfield peak position is mainly determined by the v,
term which follows the relation, (l—T/Ti)Aﬁ, a fit is performed for
V4(T) obtained as shown in the inset of Fig i4. From this fit, another
transition temperature T; is found to close to 520 K and the exponent,
B= 0.15.

The incommensurate-commensurate transition temperature T, is harder
to estimate from the line shape analysis due to the difficulties in
observing the commensurate line in the polycrystalline sample. However,
from the previous dynamic line shape measurements, where the apparent

value of QCC shows a jump discontinuity at 140 K, the transition
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temperature is estimated to be T, = 140 K.

Although the above calculation and discussion shows that the
appearance of the upfield peak is related to an incommensurate
structure, the exact incommensurate structure and the reason why the
fourth order or even higher even order term dominates the frequency
distribution still remains unclear. Two possible models are proposed,
however, to describe the incommensurate structure and the mass density
wvave of this compound.

Due to the off center occupation of the sodium nucleus, the electric
dipole moment of each unit lattice is not zero with a net electric field
perpendicular to the channel. In the temperature regime above 520 K,
the sodium nucleus exhibits rapid anisotropic motion and gives an
averaged position at the center of the cage where the sample becomes
paraelectric and the effect of incommensuration is absent. In the low
temperature regime (< 140 K) the sodium nucleus, off center in the
channel, forms a mass density wave of integer (with four being most
probable) multiple periodicity of that of the fundamental lattice and
the compound becomes ferroelectric, therefore, also commensurate with
the lattice. Between these two temperatures, the crystal symmetry
gradually changes from a space group symmetry with possible four fold or
twvo fold skew axis 47, or 49 at low temperature to a space group
symmetry of P4/mbm at high temperature. The electric dipole forms a
modulation wvave that becomes incommensurate with the fundamental lattice
periodicity. As a result the quadrupole interaction, strongly dependent
upon the electric field gradient, exhibits a quasi-continuous

distribution due to this incommensuration. The decreasing amplitude of
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the incommensurate modulation wave (equation [14]) with increasing
temperature is reflected in the gradual coalescence of the upfield
shoulder with the major component of the spectrum. When the transition
temperature, 520 K is reached, the structure becomes commensurate and
the upfield shoulder disappears. This phenomenon is similar to that
observed in NaNoj and is explained by Heine.%’

Another possible source of the incommensuration may be associated
with the twisting of the channel where the "phase" of the channel
compound changes gradually or exhibit a sudden jump and twist. This
forms a soliton-like mass density which again is incommensurate with the
fundamental lattice periodicity. Due to this structure, each and every
sodium nuclei along the channel experiences a different e.f.g. This
quasi-continuous distribution therefore gives rise to the upfield peak

observed in the incommensurate regime.
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CONCLUSION

From the dynamic NMR line shape studies, it is found that the
anomalous X-ray thermal ellipsoid observed for sodium in NaMo,0¢ is not
due to isotropic thermal motion but due to anisotropic exchange motion
between four equivalent sites, where the sodium resides off center of
the tetragonal oxygen cluster. This result has the implication that the
sodium atom binds more strongly with four oxygen atoms with a shorter
bond distance than being equally shared with eight oxygens of a longer
internuclear distance. From the dynamic line shape studies of the
second order central transition, an activation energy of discrete site
jump motion is calculated to be 1.95 Kcal/mole with a temperature
independent E;. The temperature dependent QCC determined from the
calculation shows two linear dependent regions separated by 140 K with
the coefficients equal 1.5 kHz/K and 3.9 kHz/K respectively. The
difference in the temperature coefficients of the quadrupole coupling
constant implies that a phase transition may take place.

The anomalous upfield peak that cannot be accounted for by the
dynamic motion model is found to closely related to the structural
incommensuration of this channel compound. The quasicontinuous e.f.g.
distribution associated with this phase transition predicts both the
appearance of the upfield shoulder and the gradual shift of the
anomalous peak toward the major portion of the spectra. The jump
discontinuity appearing in the quadrupole coupling constant and in Tj
further supports the incommensuration structure with the I-C transition
temperature estimated to be around 140 K. Several incommensuration

structure models have been proposed.
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APPENDIX

The irreducible components expressed by the Wigner rotation is

2 2 2 A
RO(oy, 8,750 )= L, D) (0,6,8)%, D) (o 8w doga (A1)

Inserting the appropriate rotational matrix and the principal elements

shown in [11], the components of the second rank tensor are found:

(1), Ri(B,7,8,4)

2,3 .2 .
= Py 45-{ P,(cos®)sin”feosla m’ =0
+2c0s€sinB(cosBsinfcos2acosR-sin@sinZosin®) m’=+1
2 1+c0526
+sin G(—z—— c0s20c0s2R-sinBsin2 «sin2 Q) } m'=+2
+ p(Z){ pz(cose)-P?_(cosB) - 3cosSsinbGcosBsinfeos® m’=0,+1
+ i—coszesinzﬁcosuz } m’'=+2
(). B(e8,v.0,4)
= pg { %-cosesinesin26c052a m’ =0

+2(cosze-;—) (cosBsinfcos2ocos-sinfBsin2asin®)
-icos9(cosBsinfcos2esin@+sinfsinZ acos Q) m'=+1

l+cosZB

+c0s6sing( > c0s20c0s29-sinRsin2«sin2 Q) }

2
-isine(l"—“;s—E c0s2000s29-sinBsin2osin2 @)} =42
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+ pg{ 4%-cosesine-P2(cosﬁ)

(3). B5(@6,7,0,6)

_ 2
_p2

Relations

m’ =0
+4%-cosﬁsin6 [cos26cos+icosEsing] m’=+1
+4§-sin26 [cos6sin6cos2Q-isin6sin2Q] } m’=+2
{ 2 sin’esin’feos2a m’ =0

-cos8sinB(cosBsinBcos2ocosR-sinBsin2asin®)
isin®(cosBsinfcos2osin@-sinfsin2 acos Q) m’'=+1
1+cosze 1+cosZB

% ( 5 c0s2000s292-sinBsin2esin2 Q)

i 1+c0526
-5 cose(———i——— cos2osin2R+sinBsin2ecos2Q)} m'=+2
{ 4%-sin26-P2(cosB) m’=0
+4%-cosBsinB(cosesinecosQ-isinesinQ) m'=+1
+4% sinZB( li@;—sé c0s2R-icos8sin2Q) } m'=+2
R_% = R%* and R_% = —R%* give expressions of the other

two components. The sign, * represents the complex conjugate of the

guantity. In the above, 2 = ¢ + y. Note that m" equals O, 2 only. The

components of

the individual terms of the first summation in [A-1] is

denoted at the right side of each terms. The Euler angles have been

defined in Fig. 2.
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Table I
List of center of mass o.p, second order

quadrupole shift 9s and the chemical shift og

V(MHz) Oem(ppm)@ dqs (PPM) ocs(PPm)
14.82 220.0 284.9D -64.9
58.23 -13.5 18.9b ~32.4
92.30 -25.5 7.5b -33.0
58.23(MAS) -20.0 16.3 -36.3C

@ Center of mass was obtained by zeroing the first moment.
b calculated from equation [12} using eZqQ =1.58 MHz, n=0.

c Calculated from the average of the rotation side band. 24
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Figure 1. Three dimensional view of the NaMo,0¢ crystallographic
structure as seen along the c-axis. The thermal ellipsoid in

the a-b basal plane is abnormally large.






Figure 2.

Relative orientation and the transformation in the presence
of two interactions for one of the discrete sites in the
dynamic system. Interactions A and B are oriented with fixed
angles (o, B, v)j and (o, B, y)p with respect to the
reference frame. This maintains the mutual orientations

between the interactions.
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Figure 3.

23Na magic-angle spinning spectrum at vy = 58.23 MHz is shown
together with the static powder spectrum. The spinning rate
varies from v. = 4.2 kHz to 5.4 kHz to differentiate the side
bands. In the inset, fitting of the center-band of the
quadrupolar MAS spectra is superimposed with experiment.
Parameters in the calculation are: n=0.2, e2q0/h= 1.58 MHz

and og,g= -36.3 ppm.
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Figure 4.

Room temperature 23Na NMR spectra takep at 92.32, 58,23, and
14.82 MHz respectively. The central transition spectra is
governed by both the second order guadrupolar interaction and
the shift interaction. The inverse field dependence shown in
the line width and the critical frequencies in frequency
units are characteristic of those transitions governed by

n, implving the contribution from

shift anisotropy is relatively small.
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FPigure S. The variable temperature 23Na NMR spectra from 80K to 298K at
Vo= 58.23 MHz. Notice the gradual change of the asymmetry of
the central transition from n = 1.0 at low temperature to Nh =
0.0 at room temperature. The upfield shoulder gradually
coalesces with the major component of the spectra. The

upfield shoulder is associated with the appearance of

.
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Figure 6.

Variable temperature 23Na NMR spectra at w= 92.32 MHz are
shown. Note the gradual downfield shift of the upfield
shoulder as the temperature increases to 403 K. The major

features of the variable temperature spectra are similar to

that of 58.23 MHz but scaled by a factor of roughly 1.58.
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Figure 7. The possible fourfold jump model and the relative
orientations of the e.f.g. tensor at each distinct site,

vieved in the ¢ axis direction of the tetragonal structure,

i.e., along the channel direction.
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Figure 8.

The four relative e.f.g. tensor orientations in the above
calculation are shown. The Euler angles are written for the
first site with respect to the reference frame (ZXy,Yg,Zg)-
The shielding tensor should in principle be oriented

independently from that of the e.f.g. tensor.
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Figure 9.

Theoretical NMR spectra for four site exchange motion for the
four different e.f.g. orientations. The parameters used in
the calculations are: e2qQ= 1.58 MHz, Bp= 58.23 MHz, I=3/2.
The individual parameters are: (a) n=0, (o, 8,v)= (-90., 90.,
90), (b) n=1.0, (& Byv)= (0., -45., -90.0) (c) n=l.0
(«,B8,7)= (0., 0., 0.), and (d) same as (c) but incorporate

CSA with 8§ = -16 ppm, Nes= 0.4. See text for the detail of

this calculation.
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Figure 9 (continued)
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Pigure 10. Typical iterative fitting results shown for the two room

temperature spectra taken at w= 58.23 and 92.32 MHz.
Parameters used in the calculation are equ = 1.58 MHz,

n=0.95, k= 70 kHz, & -16 ppm., N.g=0.4, op= -36 ppm.
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Figure 11. A plot of the exchange rate against the inverse temperature.
Frem the linear relation, the activation energy E, is

calculated to be 1.95 Kcal/mole.
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Pigure 12. A plot of the temperature dependence of the QCC. Two linear
regimes can be resolved. The coeffictent, aequ/aT, equals

1.5 kHz/deg and 3.9kHz/deg respectively above and below 140
K.
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Figure 13. Calculation of the frequency distribution from [14] in the
incommensurate regime for various values of coefficients vj.
The phase, $(x), in the calculation is evaluated from the

"plane wave" model, i.e., ¢(x) = cx.
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Figure 14.

Simulation of the room temperature NMR spectra taken at two
different fields incorporating the frequency distribution
governed by the structural incommensuration. The
distribution is dominated by the v, term. In the inset, the
amplitude v, is plotted with the temperature, from which
the transition temperature Ty = 520 K and the critical

exponents B =0.15 can be found.
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PART IV. CHARACTERIZATION OF HYDROGEN IN ZrgCljoH AND ZrCleHy:
STUDIES OF INTERSTITIAL HYDROGEN WITHIN METAL CLUSTERS

BY SOLID STATE NUCLEAR MAGNETIC RESONANCE
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ABSTRACT

Solid state NMR studies of hydrogen have been performed on samples
of the cluster compound ZrgClioH that contained discernible amounts of
the layered ZrCleHy (x +y £1) impurity phase. The hydrogen in
ZrgCligH resonates at 500 ppm upfield from Hy0(1) at 298 K and shovs a
strong Curie-Weiss paramagnetic shift relation but no change in line
width; o(ppm) = 2.234-105T“1(K)-241.04. This temperature dependence
indicates the presence of unpaired electron density in the proton
environment, consistent with the odd electron count in and paramagnetism
expected for ZrgClipH. Total suppression of this resonance under
multiple pulse homonuclear decoupling indicates that the hydridic
species therein experiences rapid random motion with a correlation time
shorter than 18 usec (> 50 kHz), consistent with the oversized Zrg metal
cluster cavity avgilable. These gesults are consistent with many
observations on other interstitial atoms in Zrg octahedral clusters and
vith the strong correlation of yield with the presence of Hy in earlier
synthesis of several "ZrgClys" phases.

The second hydrogen species exhibits a broad temperature-independent
resonance with center of mass at -5.0 ppm. Experiments involving a
variety of nuclear spin dynamics indicate that the primary contributions
to this signal come from pairs of hydride with d@(H-H) = 2.5+0.2 A and
each of these protons interacts to a lesser degree with one or more
chlorine atoms at a d(H-Cl) > 2.7 A and with shift parameters &=-22.7
ppm, n=0.6. A third, minor species with center of mass at -5.5 ppm, is
postulated to originate from isolated hydride units in the same phase.

These parameters and the observed orientation of the principal axis of
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the H-H dipole interaction with respect to the shift tensor are
completely consistent with the structure of the ZrCleHy (x +y £1.0)

phase observed in the samples by Guinier diffraction.



183

INTRODUCTION

Although the metal cluster phase ZrgClig has been known for some
time,l’2 questions concerning its actual composition and stability as an
empty cluster remain. The compound was initially discovered in small
amounts following ZrCl/ZrCl, equilibrations near the composition Zr012.1
The structure deduced by X-ray powder diffraction was identical to that
of 'Zrglq9’, which is nov known to actually be Zrglq9C 3 with carbon
centered in the metal cluster.3»% However, consistent preparation of
2rgClyg was never achieved, and sufficient quantities for physical
property measurements were not obtained.

More recently, Imoto and Corbett? serendipitously obtained ZrgClyg,
ZrgBriy and the related M9ZrClg-ZrgClyy (=Mp2ryClyg, M=Na, K, Cs) double
salts by the thermal decomposition of ZrX (X=Cl, Br) in the presence of
Hy and, vhen appropriate, MCl near 750°C. Good yields of the clusters
were obtained, but these were contaminated by sizable amounts of
inseparable ZrHy_y, the other product. Reactions with Zr:Cl ratios more
ppropriate to the composition of the cluster phase were not attempted.
The greatly improved yields of ZrgClyy achieved in the presence of
hydrogen and its 0.3% larger lattice, parameters compared with those from
the earlier 2rCl/ZrCl, equilibrations? led to speculation that ZrgClyp
might exist both as an empty cluster and as a hydride, similar to Nbglqq
and NbgIpqH.®

Solid state lH NMR spectra of small samples of the ZrgClyy and
NasZrClg-2rgClyy prepared earlier under hydrogen showed only broad
Lorentzian-shaped resonances (56-41 kHz at vy=536 MHz) which were

attributed to the ZrHy_y contaminant in the samples. The NMR spectrum
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of 18 in binary compound ZrHj g vas featureless, and showed 55 kHz wvide
resonance under similar conditions. The homogeneously dipolar broadened
spectrum can be compared with the relatively sharper line observed for
noninteractive and immobile protons in hydrogen-centered metal clusters.
For example, the proton NMR spectrum of CsNb6111H,7 a diamagnetic,
hydrogen-centered niobium cluster, contains a single peak 0.6 kHz wide
(vp=35 MHz).8 Thus it was concluded on the basis of the NMR evidence
that neither ZrgCly; nor the MyZr7Clig compounds contained interstitial
hydrogen. The greatly improved yields in the presence of hydrogen were
attributed to the kinetic factors and to the fact that
disproportionation of ZrCl appeared driven by the formation of ZrHj_,.
Potential causes for a broad lH resonance in other than ZrHy_y, such as
from a possibly paramagnetic cluster, were dismissed as was the very
broad ESR spectrum observed for only one of two ‘ZrgClyy’ samples at
room temperature.>

Our recent studies of NMR of 13C nuclei within a zirconium iodide
clugterd phage suggests that the breadth of a hydrogen NMR signal from
ZrgClyoH could be associated with the unique structure type. Thus the
NMR spectrum of 13¢ in the diamagnetic 2rgIjC, isostructural with
2rgClyy, contains only a very broad resonance that extends from about 28
to 480 ppm. The breadth of the resonance is in distinct contrast to the
well resolved resonance =38 ppm vide seen for 13¢ in the paramagnetic
CsZr6114C.3 The factors responsible for the broadening of the 13c
resonance in the former have not been elucidated.

The present lack of conclusive physical evidence for the presence of

hydrogen in ZrgClyy appears to stem from the poor quality of the earlier
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sample as well as the difficulties in detecting small amounts of
hydrogen. Circumstantial evidence,5 hovever, indicates the presence of
interstitial hydrogen. The idea that hydrogen could be present is
augmented by a great deal of recent experience which indicates that a
large number of other zirconium and scandium chloride cluster phases can
be obtained only when an interstitial element Be, B, C,.... 1is bound in
each cluster, raising the cluster-based electron count into the range of
13-16, with 14 electrons being most favored.3:9-11 Three of the four
signs associated with the discovery of these other interstitially-
stabilized clusters also point to interstitial hydrogen in the Zrg¢Clyg
phases: low and irregular yields, an otherwise electron deficient MgXyo
cluster (12 e), and improved yields upon the addition of the appropriate
interstitial element. The fourth sign, a residual electron density in
the cluster center from X-ray studies, would not be expected for
hydrogen, of course. Preparation of good quality samples appeared to be
the key to unraveling the role of hydrogen in the preparation and
stability of ZrgClis.

As an abundant spin I=1/2 species, 1y is easily detectable by NMR,
the lower limit of detectability being roughly 1017 spins for a line 10
Hz wide. IH has been the dominant NMR-active tag in chemistry of
liquids for almost 40 years, the primary interactions used being the
isotropic chemical shift and the isotropic scalar coupling.12 There are
a broad range of transient techniques to perturb and control nuclear
spin dynamics in order to probe the possible identities of the local
surroundings in a solid.13 The presence of nearby hydrogen atoms is

reflected in the homonuclear dipolar coupling interaction. The possible
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location of the proton in the structure and the symmetry of the
surroundings is probed by the anisotropic shielding. Motion of the
protons is probed by the response of the proton magnetization to
multiple pulse sequences with cycle times of order of the motional
correlation time.l4 Particularly noteworthy with respect to the last
point is the structural observation that the cavity in ZrgClyy (as
measured in K9ZryClig) is considerably oversized for a hydrogen, viz.,
@(zr-H)= 2.26 A here vs. 2.08 A in ZrHy and 2.10 A in ZrgBryH, both with
four-coordinate hydrogen.15

Possible identities of nearest neighbors may also be probed using
homo- and heteronuclear scalar and dipolar couplings, utilizing
differences in the dependencies of the forms of these couplings on
spatial and spin variables and on whether or not one of the partners in
the coupling is a spin 1/2 nucleus. For example, dipolar couplings
between pairs of spin 1/2 nuclei will result in inhomogeneous broadening
vhich will split into sharp lines under magic-angle sample spinning
(MAS) at 2 speed lower than the anisotrooy of the inhomogeneous
broadening. On the other hand, dipolar coupling between a spin 1/2 and
a nonspin 1/2 nucleus will not be completely sharpened under MAS, and
the resultant structure can be used as a diagnostic tool for identities
of one of the pair of coupled atoms. Specifically as applied to the
present samples, the presence of 14, 35¢1 (75.53% abundance) and 37¢c1
(24.47% abundance) offers the possibility of using the heteronuclear
coupling to discern hydrogen in the neighborhood of chlorines. A
parameter immediately extractable from the spectra under MAS is the

internuclear distance between hydrogen and chlorine.
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EXPERTMENTAL

Materials

Because of their air- and moisture-sensitive nature, all products
and reactants were handled under an inert atmosphere or in vacuum.
Zirconium powder was prepared from reactor-grade crystal bar zirconium
(<500 ppm Hf) via the thermal decomposition of ZrHy_, in high vacuum as
previously described.3 The 2rCl, was prepared by the direct reaction of
the elements at 300-350°C and purified by several successive high-vacuum
sublimations over Zr metal and through a coarse-grade Pyrex frit.
Hydrogen was introduced into the reactions in the form of ZrHp_, which
had been obtained from the reactions of the reactor-grade zirconium with
hydrogen at 650°C followed by cooling under hydrogen to room temperature
over a 6 hr period. The final hydride composition, ZrHj g, was
calculated from the initial zirconium weight and the change in pressure

of the known volume of hydrogen used in the reaction.

Svnthesis

The reactivity of reduced zirconium halides with fused silica at the
elevated temperatures sufficient for clusters formation (>600°C)
necessitated the use of welded Ta tubing encapsulated in evacuated and
sealed fused silica jackets. Samples of ZrgCliyH were prepared by the
reaction of Zr povder (>100 mesh), ZrCl, and ZrH; g at 700°C over a
two—three week period.

Two different samples were initially prepared. Sample A, used for
all the spectra shown, was prepared from a reaction stoichiometry with a

2r:Cl:H ratio of 6:12:4. An excess of ZrCly sufficient to give
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approximately 5 atm at 700°C (assuming ideal gas behavior) was also
included to reduce disproportionation of the desired cluster compound at
this temperature. The yield of ZrgClioH was estimated from relative
intensities in the Guinier powder diffraction pattern to be on the order
of 90%, although a microscopic examination of the product suggested it
might be 5-10% lower. (This assessment excludes the excess ZrCl, which
was first sublimed off under dynamic vacuum at 250°C.) The other phase
present was tentatively identified as ZrCleHy (0 < x < .43, x +y <1)
in a ZrCl-type structure.16:17 The identification was based on line
positions, intensities, and lattice constants determined from X-ray
(Guinier) powder diffraction (a = 3.4854(5) A&, c = 27.04(2) A). The
excess hydrogen used in the ZrgClijH synthesis is presumably partially
taken up by both the Ta tube and this second oxide phase.

Sample B was prepared under similar conditions with a Zr:Cl:H ratio
of 6:12:1.8 and an approximately equivalent amount of excess ZrCly. The
yield of ZrgClioH was marginally lower than reaction A (=5%) with a
slightly hvdrogen~poorer ZrClOXHy (ZrCl-type structure) making up the
difference. The identification of this oxygen-containing species
correlates with the line shape analyses and the proton spin counting in
the NMR experiments.

The assignment of ZrCleHy as the second phase is consistent with
the evidence obtained from a third reaction. A sample C prepared
similarly from a mixture with a Zr:Cl:H ratio of 6:12:1.8 and =10 atm
equivalent excess of ZrCl, was further hydrogenated at 200°C in a Mo
boat with 1 atm Hy. The small sample size and large hydrogen volume

prevented an accurate measure of the hydrogen uptake. However, the



189

observed conversion of the ZrCleHy impurity from the ZrCl- to ZrBr-
type structure was consistent with the previous experimental experience
which showed that the ZrBr structure type is adopted by ZrCleHy when
Xx+y approaches unity.17 Unfortunately, insufficient data are available
to estimate the amount of hydrogen in the ZrCIOXHy in either sample A or
B.

The presence of an oxygen-containing phase in both samples of
ZrgClioH is inconvenient but not particularly surprising considering the
air- and moisture-sensitive nature of the reactants and their small
particle size. Contamination by oxygen in any or all of the reactants
may be at fault. Separation of the two phases is considered nearly
impossible at the present time.

We have also observed that ZrgClypH can be prepared in good yield by
heating the layered ZrCl,_, (3R—M952 structure typez) under hydrogen at
710°C. The product is contaminated with ZrHZ_x'both from the degree
that z>0 and from disproportionation owing to the high equilibrium

pressure of ZrCl. at this temperature.

NMR measurements

NMR experiments were performed at 5.2 T in a superconducting magnet
and at 1.3 T in an iron core solenoid magnet using a home-built pulsed
NMR spectrometer similar to that described earlier.18 Hydrogen
resonates at 220 MHz and 56 MHz respectively in these two fields. A
total of 32766 scans were required to obtain a satisfactory signal-to-
noise ratio of the transient decay signal. A simple w/2 pulse was

applied with inverse phase cycling (alternate pulses 180° out of phase)
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in order to minimize baseline artifacts from pulse breakthrough and
ringing. A longitudinal relaxation time measured by progressive
saturation yielded a value of roughly 0.1 second at 220 MHz and slightly
less at 56 MHz. A repetition rate of 0.5 second was therefore used for
most of the experiments. An aqueous FeCly solution was used for tuning
the spectrometer and as a resonance frequency reference for experiments
performed at both fields. Pure water was used as a reference in the
spin counting experiments.

Variable temperature experiments were performed on a home built
cryogenic system with a Varian temperature controller to regulate the Ny
flow rate and the temperature.

Variable-angle sample spinning experiments were performed at a home
built CRAMPS probe19 using a Gay type20 rotor for the sealed samples.
The magic angle was adjusted by utilizing the Pake doublet feature of
the spectrum of gypsum powder. The angle © between the rotation axis
and the external magnetic field was measured from the scaled Pake

doublet of the rotational side bands according to the equation:

B = sésggfﬁtl). Wy = Py(cos8) (1]

8B is the splitting of the scaled pake doublet within a single
rotational side band, and wy is the splitting of the static Pake doublet
spectrum. A single sharp center peak will appear if the condition
3c0s?6-1 = 0 is satisfied. The larger the value of uy and the smaller
the homogeneous dipolar broadening, the mecre accurate the angle © can be

calibrated.
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Multiple pulse experiments were performed as described previously.13
After maximizing the power, a 1.2 usec W2 pulse width was obtained.
The MREV-8 pulse cycle time was 36 uséc. The scaling factor under the
multiple pulse experiment was determined by the response of Hy0 at
several off-resonance frequencies.14 ‘

NMR data are presented on either the o scale, with increasing ¢
value corresponds to higher field, or in kHz units where more negative

.

values are at higher field. All spectra are plotted with field

increasing to the right.

NMR spin counting

Proton spin counting measurement was accomplished by comparing the
zero-time free induction decay (FID) between the samples and a distilled
wvater reference. The initial decay amplitude was measured by
extrapolating the transient to the center of the preparation pulse.

The relative ratios of the two hydrogen species observed (with
shift) that were inferred from the integrated area of the two
absorptions are 2.0 (-5ppm) to 1.0 (500 ppm) for sample A, about 2.2 (-
S.ppm) to 1 (500ppm) for sample B, and 4.2:0.4 (-5.0ppm) to 1 (500ppm)
for sample C, indicating that an increasing amount of the ZrClOXHy phase

vas produced as the preparation proceeded from A to C.

Description of structures

The structure of ZrgClyoH has previously been shown by Guinier
povder diffraction to be isostructural with Zr61120.3’5 As shown in

Fig. 1, the principal building block is the ZrgClyy cluster, a trigonal
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antiprismatic Zrg core surrounded by 12 chlorine atoms that bridge each
of the 12 edges. The structure is a cubic-close-packed array of these
2rgClyg clusters with the 3 axis of each cluster normal to the layer
direction. An extensive sharing of the chlorine atoms between clusters
is necessitated by the stoichiometry and the bonding requirements of the
cluster. Specifically, the six chlorine atoms around the waist, i.e.,
those bridging edges with a component parallel to the I axis, serve as
more distant terminal chlorine atoms to metal vertices on six adjacent
clusters, three above and three below. The connectivity is conveniently
formulated as [2rgClgicli-2¢,,]C128-1g ), where C11-2 and C13-1 reflect
the connectivity just described while cl1i is not shared. 4 hydrogen
atom presumably is bound within each ZrgClys cluster, similar to that
for the carbon atom in ZrgCly7C. PES, dimensional and theoretical
evidence indicate the hydrogen in such electron-rich environments should
be considered hydridic in character.?1 ‘

A Z2rCl04 phase is known to form via continuous random insertion of
oxygen into tetrahedral metal interstities in the 3R-ZrCl, a structure
in which tightly bound slabs are formed from cubic-closed-packed
homoatomic layers sequenced Cl-Zr-Zr-C1.1® The oxide derivative has
subsequently been found to take up hydrogen as ZrCleHy, evidently
utilizing the remaining tetrahedral sites, to an experimentally
determined limit of x + y = 1.0.17 (Different hydride structures are
formed in the absence of oxygen.ls) The stacking of the four-layered
slabs is found to change from ZrCl- to ZrBr-type as x + y approaches

1.0, a change that is not reflected in the proton NMR.
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RESULTS AND DISCUSSION

The Fourier transform of the FID, obtained by applying a simple w2
pulse to sample A at two different magnetic fields, is shown in Fig. 2.
Two peaks were resolved at both fields. The first moment of the
downfield peak is at -5.0 ppm as ;eferenced to Fe+3(aq). The center of
mass of the upfield peak is at approximately 500 ppm. The integrated
areas of the two peaks give a ratio of about two (-5 ppm) to one (500
ppm). The spectrum of sample B is similar to that of sample A except
that this area ratio is slightly higher. In sample C, this ratio is
even higher, about four to one. Of particular importance is the
recognition that the measurements were performed on a two-phase mixture,
with rather different properties of hydrogen in the two phases. In the
following, the NMR spectra of the upfield and the downfield peaks are
discussed individually and identified with ZrgCljsH and ZrClOyHy,

respectively.

Upfield component

The effective transverse relaxation time TE of the upfield peak was
determined by nonlinear least squares fitting of the spectrum to
Gaussian, Lorentzian, and multiplication of Lorentzian and Gaussian line
shape functions.2? Although the relaxation times are roughly equal for
different kinds of line shape functions, the Gaussian function seems to
yield the best fit for the spectra taken at both magnetic fields. The
implication is that this peak is homogeneously broadened (vide infra).
The relaxation times and the isotropic values obtained in the fitting of

the peaks are listed in Table I. For comparison of the line shape and
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the line width, the spectra are re-drawn in Fig. 3 with the x-axis in
units of kHz.

MAS experiments with a rotor frequency of =2 kHz at the NMR
frequency of 220 MHz vere performed in order to confirm that the upfield
peak is homogeneously broadened. The line width of the upfield peak
(7.5 kHz) changes only slightly and exhibits no rotational side bands in
the MAS spectra, indicating that the limiting line width of the
homogeneous broadening is approximately 5.5 kHz (T9=80 usec). This
result correlates with the fact that the line width of this peak at 56
MHz (4.7 kHz) is not one-fourth of that taken at 220 MHz, as would be
expected for an inhomogeneously broadened shift interaction.

Upon homonuclear decoupling using the MREV-8 multiple pulse
sequence,19 the upfield peak is reduced to the noise level. This
phenomenon has been found in several other systems undergoing rapid
nuclear motion where the effective magnetization changes owing to the
motion of the nuclei on a time scale shorter than the sampling time of
the multiple pulse sequence.u"19 As a result, the transient signal is
not coherently averaged in the stroboscopic observation windows. The
failure to observe the upfield peak under homonuclear decoupling
supports the idea that the proton in this environment is undergoing
isotropic and incoherent motion with correlation time T shorter than the
sampling time of the multiple pulse homonuclear decoupling experiment
(18 usec).

Ve now consider the origins of the large upfield shift. Consider
first clusters with no unpaired electrons. The theoretical basis for

the screening effect of paired electrons was initially formulated by
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Ramsey23 by evaluating the induced current from the environmental

electron density as follows:

Sy = g +°Ap (= x,y,2) (2]

vhere

ez X2+ 2
< OXF=5E= Jon

°d T .2 [3]
2me r
<0XI%_1 mzkln'k'> <n’X’|g=l mzkr_3|0)>
C'Ap = -4Re n;:’ N En,— En
m_ = (ieh/2me) (X, —— - y, =——)
zk ™ k ayk Yk axk

Ramsey’s formulation separates the shielding tensor into .two
components, a diamagnetic term, o4, which is calculated from the ground
state wavefunction, and a paramagnetic term, Ops which involves a
summation over all the excited states arising from the lack of spherical
ry of the electric peotential 2t the nucleus site, The magnitude
of the op term can be comparable with that of oq and can serve to cancel
the contribution from the diamagnetic term.

For the high upfield shift observed to occur within this model, the
diamagnetic term og must significantly override the paramagnetic term
Op- The disappearance of the signal under multiple pulse excitation
implies that the proton is hopping within the cluster with a correlation
time of less than 18 usec. This motion would considerably reduce the
shielding anisotropy observed in a static system. Considering only the

isotropic value in equation [2] and [3], the diamagnetic component o4
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becomes: 24

2
e

1
5y = — < o|§=1 = o [4]
3me . k

If the upfield shift is caused by the hydridic character of the proton,
this shift should be independent of temperature because of the
temperature independence of the electronic wavefunctions as implied by
equation [4].

Another possibility to account for the observed upfield shift is
that produced by an unpaired electron spin. Addition of a hydrogen atom
to the empty, 12-electron ZrgClyg cluster would result in an unpaired
electron configuration, probably deriving from a hole in the tyg Or tiy
orbital set.3 The unpaired electron density in the ground state of the
cluster produces a strong local magnetic field which result in a
chemical shift to the hydrogen nucleus that is orders of magnitude
larger than the shift usually observed in diamagnetic molecules.

By relating the mean value of the electron magnetic moment, <35> to
the bulk Curie Law magnetic susceptibility,zs’z6 the magnitude of the
shift associated with the unpaired electronic spin density in the ground
state of the ZrgClioH, cluster can be found to equal to

A gB a(S+1)S
H™ 3KT

Substituting the constants and changing unit yields

2 - 0.01053 2325 (5]
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where "a" is the hyperfine coupling constant in units of MHz. Variable
temperature experiments were performed in the range from 218 to 298 K to
verify the postulate that the unusual isotropic shift of the upfield
peak is associated with the presence of unpaired electron spin density
in the ground state of the cluster. The upfield peak shifts further
upfield as the temperature decreases. 1In Fig. 4 the shift is plotted as
a function of the inverse of temperature with the linear least squares
fit passing through the points with a slope of 2.234x10° ppm-K and the
intercept, -241.04 ppm. The linear behavior indicates that the upfield
peak is associated with a Curie.Law type magnetic susceptibility, and
the presence of unpaired electrons in the ground state.

The difference of =16 ppm in the center of mass of the upfield peak
in the spectra taken at two different fields, Fig. 2, is clearly related
to this highly temperature ‘dependent shift relation. A correction of
15.4 ppm to the isotropic shift value is found from the agove inverse
temperature relation when consideration is given to the fact that the
experiments were performed in different laboratories where the ambient
temperatures vere 19°¢c (v = 56 MHz) and 25°¢C (vg = 220 MHz)
respectively.

From the slope of the (A&H/H) vs. T-1 curve (Fig. 4) the hyperfine
coupling constant a is determined to be 28.29 MHz or 6.64 kGauss, a
value quite typical of organic radicals.22 This shift can be related to

the unpaired electron density at the nuclear, p(N). According to

Fermi’s formula:

a= =2 1hgBe() (61
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o(N) is determined to be 4.27-1022 electron/cm> which is about 0.02
times of the unpaired electron density found at the nucleus of an
isolated hydrogen atom.23:26 This value is also comparable with a
variety of organic radicais.

The above results indicate that the upfield hydrogen species resides
in the environment of unpaired and localized electron and is highly
mobile at room temperature. It is therefore reasonable to locate the
hydrogen inside the octahedral zirconium cluster. Both the rapid proton
motion and the temperature dependence of the shift described above are
supportive of the hypothesis regarding the formation and stability of
ZrgClyg (cf. Introduction), namely, that hydrogen is needed for its
synthesis, and, as with all other examples of ZrgCly9Z clusters, the
interstitial nonmetal atom contributes both electrons and bonding to the
cluster.? In the particular case of ZrgClygH, the cavity size is
determined largely by the 2r-Zr bonding with 11 electrons in metal-metal
bonding typ and tjy sets (in the octahedral limit3). This leaves
T(Zr-H) = 2.25 A, at least 0.15 A too large for optimal bonding.s’15
The rapid motion thus allowed prevents the observation of the rescnance

under conditions of homonuclear multiple pulse decoupling.

NMR line shape of the downfield component

The line shape of the downfield peak changes with applied field
(Fig. 3). However, the line width does not scale proportionally, which
is strongly indicative of the presence of a field-independent
homonuclear dipolar interaction. At high fields the shift anisotropy

seem to dominate while at lower fields, a structure that is inferred to
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originate from inhomogeneous dipolar broadening begins to appear. The
resulting spectra depend not only on the individual interaction
parameters characterizing shielding and dipolar tensors, but also
strongly on the mutual orientation between these two interactions (vide
infra).

In the MAS spectrum, (Fig. 5), several interesting features are
observed from which the major Hamiltonians affecting the investigated
protons can be determined. The bulk shape of the spectrum resembles
that of a Pake doublet, as expected if the spectrum were inhomogeneously -
broadened by two-body homonuclear dipolar interactions. The skewed
intensity of the rotational side band under MAS indicates that an
asymmetric interaction of the same order of strength as the dipolar
interaction also contributes to the spectrum. This interaction is
attributed to the chemical shift interaction.

Under rapid sample spinning each rotational side band splits into
four peaks. There are three possible reasons for this splitting: (a)
the presence of more than one hyvdrogen species, each possessing a
different isotropic shift; (b) an incorrect setting of the magic angle
such that the scaling factor Po9(cos®€) is not zero; and (c) the presence
of another interaction that is not scaled by Py(cos®).

The relative intensities and locations of the split peaks are
reproduced in all rotational side bands. This suggests that the
splitting does not originate from different hydridic species possessing
different isotropic shifts, since this would produce different relative
intensities and progressive shifts of the split peaks from one

rotational side band to another. Therefore, the first possibility is
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excluded. VWhen the sample was spun at an angle of :2 degrees from the
magic angle, the splitting of the individual center band (as shown in
the inset of Fig. 5) did not scale as expected for homonuclear dipolar
interactions; therefore the residual fine structure does not come from
an error in setting the magic angle. The rotational apgle was found to
match the magic angle to within 0.1 degree as estimated from the
rotational side bands of the Pake doublet in gypsum.

The variable-angle sample spinning (inset of Fig. 5) shows a
.systematic change in the relative intensities of the split peaks, with
almost constant spacing as © deviates from the magic angle by i2°. This
behavior is characteristic of heteronuclear dipolar coupling between a
quadrupolar nucleus and a spin 1/2 nucleusZ’/ where the scaling upon
rotation doe; not follow P9(cos@).

‘Therefore, we conclude that the major contributions to the peak at
-5 ppm are homonuclear dipolar interactions and chemical shift
interactions with a single isotropic value. The contribution of the
next-nearest neighbors of the proton pair to the dipolar structure
appear to be negligible (vide infra). Although the heteronuclear
dipolar interaction between hydrogen and the quadrupolar spin nuclei Cl
were observed from the splitting of the rotational side band, this
interaction is an order of magnitude smaller than the two major
interactions.

A line-shape simulation based upon the model of a proton pair
experiencing dipolar plus chemical shift interactions has been performed
and is detailed elsewhere.28® The calculation involves both first order

dipolar and chemical shift interactions with noncoincident tensor
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orientations. The interaction parameters obtained from the simulation
of the spectra at both fields are listed in Table II.

In Fig. 6, the calculated best-fit spectra are compared with the
experimentally observed spectra. Good agreement is obtained not only in
the fit for a single field, but the results are also consistent for the
fit performed at a second field. This supports the assumption that the
majority of hydrogen atoms contributing to the downfield peak are
isolated dipolar pairs of hydride with identical chemical shifts. From
the dipolar coupling constants, the internuclear distance of the dipolar
pair is calculated to be 2.5:0.2 A. The fitting results are sensitive
to a change in the angle B as small as two degrees, but a change in « by
20 degrees does not produce a visible change in the spectrum. This
explains the difference in « between two fields given in Table II.

Another simulation assuming that the two interaction tensors are
coincident has been carried out as a comparison to the previous
calculation. The fitting parameters obtained under this constraint for
the spectrum taken at two different fields are quite different. This
indicates that allowing interaction tensors to have nonparallel
orientations is in general necessary. to obtain a satisfactory fit.

In fitting the downfield peak, the small component of proton species
appearing at the center of the spectrum has been ignored. The
appearance of this peak can be related to either the coupling of a
relatively distant third proton to the above mentioned proton pair or a
small percentage of the protons experiencing equi-distant three-proton
dipolar coupling. Another possibility is that the species associated

with this signal are isolated protons in ZrClOyH,. Notice that the r=3
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dependence of the dipolar coupling constant implies that a proton twice
the distance from the "isolated" pair of hydrogens that lead to the
major portion of the downfield signal produces only one-eighth of the
dipolar coupling strength and hence can be considered as a remote or
isolated hydrogen.

Finally, to confirm the above conclusion and the fitting results, we
applied the MREV-8 multiple pulse sequence to suppress the homonuclear
dipolar coupling. This yielded a tensor-like shielding spectrum for the
downfield peak. A simple calculation for the chemical shift tensor gave
an anisotropy parameter & of -22.7 ppm and an asymmetry parameter 1 of
0.6. This further confirms the above line shape fitting. Fig. 7 shows
the superimposed experimental and fitted shift anisotropy for the
multiple pulse spectrum. The absence of more than a single shielding
anisotropy contributing to the downfield proton species, as inferred
from the MAS spectrum, is supported by the fitting of a single shielding
tensor to the multiple pulse spectrum.

The relative orientations of the shielding and dipolar tensors
obtained above are shown within the layered Cl-Zr-Zr-Cl structure in
Fig. 8 to demonstrate the presence of pairs of close hydrogen atoms in
tetrahedral interstices. The line shape fitting predicts that the
principal axis of the shielding tensor oriented (e, B)= (25.°, 60.P) with
the inter-protonic vector (Table II), suggests that the major electron
density is distributed perpendicular to the layer as seen from Fig. 8.
This orientation should in principle be consistent with that obtained

through theoretical calculation using {2] or {3].
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Heteronuclear dipolar coupling of the downfield species

The fine features observed in Fig. 5 are attributed to the
heteronuclear coupling between a quadrupolar nucleus and a spin 1/2
nucleus. In the system investigated they correspond to Cl and H,
respectively. As mentioned previously, this relatively small
heteronuclear coupling does not affect the spectrum simulation of the
oriented dipole and chemical shift interactions for a static spectrum.
However, upon further investigation of the fine features of the
rotational side bands, more specific details concerning the identity of
the downfield component can be found.

The NMR spectra of a spin 1/2 nucleus affected by heteronuclear
dipolar coupling to quadrupolar nuclei have been J'.nvestigated.?-7’29‘32
In this circumstance the quantization axis of the quadrupolar nucleus
deviates ﬁrom that of the Zeeman field in the presence of the external
magnetic field.29 This.results in the product basis eigenstates for the
two-body dipolar problem not being pure Zeeman states but a linear
combination governed by the quadrupolar coupling Hamiltonian. The
heteronuclear dipolar coupling is therefore strongly dependent upon the
quadrupole coupling strength and the.mixing of Zeeman states of the
quadrupolar nucleus.

The heteronuclear dipolar coupling is usually small compared with
other interactions and can be resolved only in experiments with single
crystals or under sample spinning. For a single crystal experiment
Natio, Ganapathy and McDowell30 found that the heteronuclear dipolar
coupling causes nonsymmetric splitting of the spin 1/2 spectrum into

2I+1 peaks. Hexem, Frey, and Opella29 have shown that heteronuclear
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dipolar coupling is not averaged to zerv under the magic-angle sample
spinning i.e; it does not follow the Py(cos6) scaling relation. The
residual line shapes of the MAS spectrum of the spin 1/2 nucleus are
influenced by: (a) the ratio equ/ub, (b) the sign and the asymmetry
parameter of the electric field gradient (e.f.g.) tensor of the
quadrupolar nucleus, (c¢) the internuclear distance, and (d) the mutual
orientation of the e.f.g tensor and the dipole internuclear vector. In
the sample spinning the splitting can appear as a doublet for a small
value of the ratio of the quadrupole coupling constant and Larmor
frequency, equ/wp and as up to 2I+1 splittings when this ratio is very
large.

All the above calculations were performed for the two body problem.
The influence of a third, either quadrupolar or spin 1/2 nucleus has not
been investigated. In principle, a detailed line shape calculation for
the variable angle sample spinning results can be performed to obtain
the Cl-H internuclear distance, the chlorine electric field gradient,
and the mutual orientation between the e.f.g. tensor and the dipole
interaction tensor. The possibility of heteronuclear dipolar coupling
of hydrogen to more than one Cl nucleus in the system studied and the
presence of two Cl isotopes adds additional features to the spectrum.
Furthermore, the scalar J coupling between Cl and H is only slightly
smaller than the dipolar coupling. These factors increase the
complexity of an exact line shape calculation of the heteronuclear
coupling MAS spectrum for the proton. Hence only a rough estimation is

obtained from the previous calculations.
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Although coupling to more than one chlorine nucleus produces a
different spectrum, the "size" of the splitting is basically governed by
the strongest coupling in the closest Cl-H pair, and if all chlorines
coupled to the proton are chemically equivalent, the "size" of the
splitting, while not additive, can be approximated by a single Cl-H
pair. Therefore, the simplest case is assumed that allows us to apply
the calculation performed by Zumbulyadis, Henrichs, and Young27 and by
Menger and Veeman. 32 Comparing the three peak structure observed
experimentally (inset of Fig. 5) with their calculations, we find that
the ratio equ/ub equals =2.5. Since the Larmor frequency for 33¢1 is
21.06 MHz and for 37Cl is 17.95 MHz at this magnetic field, this yields
a quadrupole coupling constant eZQq of = 40 MHz from ratio equ/an.

This value is comparable to that of chlorine nuclei in most organic
molecules, where typical quadrupole coupling constants are in the range
of 25 to 35 MHz.33 The heteronuclear dipolar structure caused by the
different chlorine isotopes could not be resolved because of the
closeness of their Larmor frequencies. The sign of the quadrupole
coupling constant is found to be negative (e2q0 < 0). Experimentally,
the spacing of 950 Hz between the most upfield and most downfield
splittings for a spin 3/2(I) coupled to a spin 1/2(S) equals = 1.6 times

that of the dipolar coupling constant, 4cj_g where

Yy B _ L33, -3
8oy g = CLH / r(3:1-H = 11.77 (kHz-A%) gy [7]

From this result, we determine that the internuclear Cl-H distance

is roughly 2.7 A. This value is a lower limit since we have assumed the
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strongest coupling case, as mentioned previously.

The identity of the species associated with the downfield peak

Attribution of the -5.0 ppm resonance to ZrClH is immediately
excluded by comparison with the results of a previous study of these
phases.y”35 ZrClH shows a positive shift anisotropy of approximately
100 ppm which at 220 MHz should give a spectrum with at least a 20 kHz
half width; a line width of 12 kHz is observed in the present .case.

This downfield signal insteaded evidently arises from a small amount
of the hydrogen-richer second phase that was identified in the sample,
ZrClOXHy (x < 0.4, x + y <1). This phase has a close packed, layered
structure sequenced Cl-Zr-Zr-Cl with O and H distributed randomly over
the tetrahedral sites between the zirconium layers.16’l7 This
assignment is supported by the following NMR results: (a) The upper
limit for the closest hydrogen-hydrogen distance in this compound is
equal to the 2.6 to 2.7 A oxygen separation found in the refined
structure of 2rCl0,. A value that is quite consistent with the value of
2.5 0.2 A determined from the powder line shape simulation; (b) The
hydrogen-chlorine distance in this structure is found = 2.85 A on the
same basis, which is consistent with the lower limit of 2.7 A estimated
from the MAS fine structures; (c) The variation of the ratio of the two
peak areas with increasing hydrogen pressure used in the synthesis is
consistent with the known nonstoichiometry of hydrogen in ZrCleHy. In
addition, the change in structure of this phase from the ZrCl to the
ZrBr type as x + y approaches unity observed with these samples is

consistent vith the previous studies of the ZrClOHy sample.17
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CONCLUSION

Proton NMR studies on nominal ZrgCliy preparation containing minor
ZrCleHy impurity levels revealed the presence of two completely
different hydrogen species. The shift of the upfield peak at = 500 ppm
relative to H90(l) at ambient temperature shows a linear dependence on
inverse temperature indicating that the shift originates mainly because
of the presence of an unpaired electron in the vicinity of the
corresponding hydrogen nucleus. The local hyperfine splitting is
determined from this shift-T-1 dependence to be 28.29 MHz (6.64 Kgauss).
From the unpaired electron density, this hydrogen is located inside the
octahedral zirconium cage where a single localized unpaired electron is
predicted from the stoichiometry Z2rgClioH. The high electronic density
vithin the Zrg octahedron and the probable hydridic character of the
proton investigated may also contribute to the observed temperature
dependence of the shift. Total suppression of this resonance in MREV-8
multiple pulse experiments and the invariance of the line width to
temperature indicate that the proton within the Zrg metal cluster must
exhibit a rapid random motion on a time scale short compared with the 18
psec sampling time of the experiment,

& second hydrogen species is observed 5.0 ppm downfield from HyO(1l)
with an isotropic value that is independent of temperature. Variable-
angle sample spinning spectra show that the peak is composed of three
major inhomogeneous interactions, namely the shielding anisotropy, the
homonuclear dipolar interaction between a pair of hydrogens, and the
heteronuclear dipolar interaction between the protons and one or more

35¢1 (or 37Cl) nuclei. This heteronuclear dipolar interaction is about
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an order of magnitude less than the dominant shielding and homonuclear
dipolar interactions. This fact allows a comparison of the line shape
associated with noncoincident dipolar and chemical shift tensors with
that of the static powder spectrum. The fitting shows that the dipolar
splitting between the proton pair is 8.6 :0.5 kHz, corresponding to an
internuclear proton distance of 2.5+0.2 A. The shift anisotropy § is
-22.7 ppm and the asymmetry parameter, n=0.55. Principal axis of the
dipolar interaction (coincide with the internuclear vector) is found to
be oriented with Euler angles (e,B) = (25.0°, 60.0°) with respect to the
shift tensor. Since the shift tensor is related to the electron
density, the noncoincident orientation is found to be consistent with
the ZrCleHy structure. The proton shielding parameters were confirmed
by the homonuclear decoupling experiments using the MREV-8 pulse
sequence.

A simple line shape analysis of the hetronuclear dipolar interaction
from the MAS rotation side shows that the the proton pairs in the phase
2rC104Hy are coupled to one or more equivalent chlorine nuclei with a
d(H-Cl) approximately 2.7 A. This and the proton separation are both

consistent with the structure of ZrClOXHy.
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Table I
Locations and the transverse relaxation times of the
upfield peak of ZrgClisH at two fields

Field Location T§ relaxation time (u sec)

Vo (MH2) (ppm) (kHz) Gaussian Lorentzian Lrnz*Gaus

56.03 500.3 28.03 80.8+9.3  74.4+18. 83.7+11.

220.15 484.2 106.6 52.5+2.1  42.5+4.2 53.4+3.1
Table II

Fitting parameters for the two interactions of the
downfield peak for ZrClOyH, at 220 MHz and 56 MHz

Field(MHz) DCP(kHz) &(kHz)2 1 o(deg)®  B(deg)

220.15 8.8 5.2 0.35 25.0 60.0

56.03 9.3 i.25 0.6 45. 55.¢
@ § average value = -22.9 ppm.

b This fit is relatively insensitive to the angle c.
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Pigure 1. A [110] projection of the structure of the ZrgClygH. The

proton is believed to occupy the center of the Zrg clusters.
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Figure 2. 14 NMR spectrum for the ZrgClyoH + ZrClelly samples at 220
and 56 MHz. Notice the large upfield shift at approximately

500 ppm.
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Figure 3. 1t NMR spectrum of Fig. 1 re-drawn in kHz units to
demonstrate the relative line widths. The upfield peak shows
a good fit to a Gaussian line shape. The downfield spectra
show khe features of mutually oriented dipolar and chemical

shift interactions.
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Figure 4. Temperature variation of the shift of the upfield peak
between 218 K and 298 K. The linear relation with 1 §s
characteristic of a Curie-Weiss paramagnetic shift from a

proton coupled to an unpaired electron.
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Figure 5.

The magic-angle sample spinning (MAS) spectra at 220 MHz.
The inset shows the change of the center band with sample
spinning at 52.7, 54.7 and 56.7 degrees with respect to the
magnétic field. The spinning frequency for the sealed
samples is 2 kHz which allows the profile of the

inhomogeneous interaction to be maintained.
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Figure 6. The fitted (bottom) vs. experimental (top) spectra of the

down field component at 220 and 56 MHz. The parameters are

those listed in Table II.
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Figure 7. Superposition of a single shielding tensor with the MREV-8
multiple pulse spectrum (36 usec cycle time). The calculated
parameters are &= -22.7 ppm, W= 0.6 ppm. This spectrum has

been corrected by the scaling factor 1.95.
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Figure 8.

The orientation of the dipolar and the chemical shift
interactions of the downfield proton species, ZrCleHy. The
inter-proton vector determines the Z axis of the axially
symmetric dipolar tensor. The orientation of these two
interactions is seen to be consistent with the structure.
Parameters are those listed in table II from fitting of the

static powder spectrum at 220 MHz.
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GENERAL CONCLUSIONS AND APPLICATIONS

The NMR line shape study of both static and dynamic system are
demonstrated in four parts under different conditions. The conclusions
and the application to an appropriate system in individual part are
summarized.

Part I. In a nuclear system governed by two interactions where
neither interactions dominates, the combined effects are an
inhomogeneously broadened spectrum which depends not only upon the
individual interaction parameters but also strongly upon the mutual
orientations between these tensors. The current studies shows that:
(a) the effects of the mutual orientation between interaction tensors
are reflected in both the static powder line shape and the distinctive
features of the field dependent critical frequencies; and (b) the
tensorial orientation between interactions and the individual
interaction parameters can be determined by analyzing the critical
frequencies (singularities, shoulders, and steps) of a powder spectrum
vs. the magnetic field strength.

Although the method is developed for both satellite transitions and
the central transition of spectra of guadrupolar nuclei under the
influence of a shift interaction, modification can be made easily tc
incorporate three interactions, e.g., quadrupolar, dipole and shift
interactions, or to involve higher order perturbations.

Part II. The NMR spectrum of 133¢s in cs exchanged mordenite
indicates that the e.f.g. tensor increases with decreasing water
content. The coupling constant increases from 2i0 kHz for the fully

hydrated sample to 3.1 MHz for the anhydrous sample. Under MAS, the
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anhydrous sample shows two peaks, with relative intensities of roughly
1:3. Two different sites are clearly observed in the anhydrous sample
with center of mass of the peaks at -191.0 ppm and -57 ppm. The
assignment of the peaks to Cs locations is made on the basis of the
structural difference of the six-ring coordination site VI from the
eight-ring sites II, and IV. After correcting for the second order
quadrupolar shift the down field peak, -24 ppm; may be attributed to
site VI while sites II and IV with similar structures yield similar
chemical shifts at -157 ppm and -186 ppm.. In the fully hydrated sample
all three sites possess an identical isotropic value of -64 ppm.

Part III. From the dynamic NMR line shape studies, it is found that
the anomalous X-ray thermal ellipsoid observed for sodium in NaMo,0g is
not due to isotropic thermal motion but due to anisot;opic exchange
motion between four equivalent sites, where the sodium resides off
center of the tetragonal oxygen cluster. This result has the
implication that the sodium atom binds more strongly with four oxygen
atoms with a shorter bond distance than being equally shared with eight
oxygens with longer internuclear distance. From the dynamic line shape
studies of the second order central transition, an activation energy of
discreet site jump motion is calculated to be 1.55 Kcai/mole with a
temperature independent E;. The temperature dependent QCC, determined
from the calculation shows two linear dependent regions separated by 140
K with the coefficients equal 1.5 kHz/K and 3.9 kHz/K respectively. The
difference in the temperature coefficients of the quadrupolar coupling
constant implies a phase transition may take place.

The anomalous up field peak that can not be accounted for by the
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dynamic motion model is found to closely related to the structural
incommensuration of this channel compound. The quasicontinuous e.f.g.
distribution associated with this phase transition predicts both the
appearance of the upfield shoulder and the gradual shift of the
anomalous peak toward the major portion of the spectra. The jump
discontinuity appeared in the quadrupole coupling constant further
supports the incommensuration structure with the I-C transition
temperature estimated to be around 140 K. Several incommensuration
structure models have been proposed.

Part IV. Proton NMR studies on nominal ZrgClyo preparation
containing minor ZrCleHy impurity levels revealed the presence of two
completely different hydrogen species. The shift of the upfield peak at
= 500 ppm relative to Hp0(l) at ambient temperature shows a linear
dependence on inverse temperature indicating that the shift originates
mainly because of the-presence of an unpaired electron in the vicinity
of the corresponding hydrogen nucleus. The local hyperfine splitting is
determined from this shift-T-1 dependence to be 28.29 MHz (6.64 Kgauss).
From the unpaired electron density, this hydrogen is located inside the
octahedral zirconium cage where a single localized unpaired electroa is
predicted from the stoichiometry ZrgClioH. The high electronic density
within the Zrg octahedron and the probable hydridic character of the
proton investigated may also contribute to the observed temperature
dependence of the shift. Total suppression of this resonance in MREV-8
multiple pulse experiments and the invariance of the line width to
temperature indicate that the proton within the Zrg metal cluster must

exhibit a rapid random motion on a time scale shorter than 18 usec.
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APPENDIX A: COMPARISON OF DIRECT ANb INDIRECT SPECTRUM CALCULATIONS

This appendix illustrates the mathematic identity between the method
proposed in equation [20] of Part I and other techniques developed
earlier in calculating the spectrum. The advantages of the
computational technique by first evaluating the FID developed here over
other methods will be discussed in terms of the simplicity, speed and
the easiness of formulation.

Identity relation is illustrated by deriving the core calculation
formulae of other direct methods from the theory proposed in the
previous section.

First we insert the variable 2=(9, ¢) into [20] in part I and let
the FID for that unique orientation @ be £(Q, t) incorporating the
effect of spin-spin relaxation, the transient signal for a single

quantum transition with transition probability Py between levels k-1 and

k becomes:

f(a,t)=g(t)-e‘i“k(9)t-9k [20]

Vhere h-uk(9)=Aek,k_1
<f(t)> is used to denote the powdér averaged FID, and <F(w)> for the
averaged spectrum. The averaged transient signal from [20] can be

written as:

N N . . 2n
<f(t)>=ZE IQ de £ (Q’t)=ZE IO d€sin® IO dé £ (R,¢t) [A-1]

The expression [g dQ will be used in the following for the average
of spatial variable [sin&d®fd¢. N is the normalization constant

proportional to the density of the nuclei and the transition



236

probability.

Numerically the average can be approximated by summatioﬁ over
discreet increments of angles © and ¢. Calculating the powder averaged
frequency spectrum on the other hand can be formulated similarly.

Nov let F(Q, w) be the corresponding complex Fourier transform of

f(Q, t), the averaged spectrum will be:

N N © .. -iwt ,
{F(w)>= in Ig dR F(Q,w)s= in IQ de IO dt e £{(Q,t) [A-2a]
N @ -iwt
= IO dt ? Ig d®Q £(R,t) [A-2b]

Combining [A-1] and [A-2b], we obtain the well known results.

iwt

© <F(w)>= Jg’ dt e % <f(o)> [a-3]

The real and the imaginary parts yieids the in phase absorption and
the out of phase dispersion respectively. Notice that [A-2a] and [A-2b]
differ in the order of integration which implies that the order of
powder average and the Fourier transform can be interchanged without
affecting the results. Henceforth we have reached an important
conclusion that the final powder specirum, <F(w)> can be reached by the
following two mathematically equivalent approaches:

(1). By powder averaging the Fourier transform of the individual
FID of each orientation; F(Q,t) according to [A-2a] and

(2). By the Fourier transform of its powder averaged FID <f(t)>
according to [A-2b], or equivalently by applying [A-1] first and then
applying [A-3].

It is the second approach that is taken in the present work and all
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other line shape calculation performed in the thesis. Several
advantages using this approaches as compared with other direct
approaches derived from [A-2a] are pointed out later.

Before this comparison of these two approaches, we wish to develop
several important fundamental relations from [A-2a] which becomes the
bases of several well known variations of the first approaches in direct
calculating the spectrum. And since [A-2a] and [A-2b] are equivalent,
the following derivation implies the identity between the method
proposed here and the other well known direct methods previously
prescribed.

As mentioned before, g(t) in [20] is spatially independent, it can
be separated from the averaging over @=(8, ¢) which broadens the delta
response of F(Q, w). Hence the Fourier transform of [20] yields a delta
function 8(w-uy(R)) convoluted with G(w). & is the Dirac delta function
that will be zero everywhere but equal to unity when u:uké(g). and G(w)
is the corresponding Fourier transform of g(t). From the above
discussion the powder average for the frequency spectrum according to eq

[A-2a] is equivalent to the following:

T(w)=Re<F(w)>= G(w) * { —E-! S(w-w (Q))dR}
4 °Q “&

= G(w) * H(w) [A-4]

Where * represents convolution, I(w) is the line shape of the final
absorption powder spectrum, and H{w) represents the corresponding
function as understood. This equation states that the powder spectra
are calculated by superimposing all the stick spectra corresponding to

each unique spatial orientation Q of the K-th transition which resonates
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at w=ux(RQ) as represented by function H(w), which is finally convoluted
wvith the broadening function G(w) to yield the powder spectrum.

Although [A-4] already provides a direct approach in simulating the
spectrum, there are two widely used variations originated from this
equation will be derived in the follows.

(1). Convolution method:

The first variation of this method is performed when function G(w)
can be expressd by an analytical expression which is physically
meaningful.

By utilizing the property of Dirac delta function that

% g(x)-8(x-x )dx = g(x) [a-5]

and by directly applying the convolution relation to [A-4], equation

[A-4} can be further simplified as:

I(w= G(w* H(w= [ G(w ) H(ww) dw

N
= ZEI Gl )L ooy —m YdQ) dw'

@ Q “%

= % 9 {J G(w): S(w-w’—ai{)dw’} de

- o, Gy (D) do [4-6]

Changing the order of integration in the third step in the
derivation is valid since G(w) is spatially independent. Equation [A-6]
states that the spectrum line shape I(w) of the k-th transition can be
readily calculated by replacing the variable w in G(w) by w-uw(®) and

perform the powder average to obtain the final spectrum.
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(2). Gradient method:

A second variation of this direct approach is much simpler in form.
This expression relates more direcfly to the orientation dependent
transition energies which we shall derive also from [A-4] by changing
the parameters. In order to simplify the following discussion we shall
assume G(w) being a delta function. General expression for G(w) can be
easily incorporated after the H(w) has been derived.

The identity relation, [4-7] shall be derived first. First
integrating over the variable w on both side of [A-4] and applying the

relation of Dirac delta to [A-4] yields

7r Jo dsine [ _ 8{(w-w (8,4)}dw

- il—n g 49 [4-7]

This equation states that the first moment of the spectrum is
conserved, which is independent of principal axis frame transformation
since the spatially dependent resonance frequency is absent on the left

hand side. Next by changing the variable of «, to its implicit variable

6,9 as follows:

d d
3'2{_ de+ % d¢= grad{w(®,$)}:(dS,d¢)

dmk( e, $)

]grad{u&(6,¢)}l|dr|cosi [A-8]

Where § is the angle between the vector grad(wy) and the
displacement vector dr= (d8,d¢). When the gradient is not zero, we can

divide grad(uwy) on both side of the above equation and integrating over
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uy, this gives:

-1
|

[da |grad{w (8, )} |7"= [](d9,d9) [cosE

The left hand side of the above equation is a constant. This
relation is finally inserted in to [A-7] which gives:
l—l

fi(wdw = N § {J118{0-q (Dda]- [grad{e (D} | dy (}de

= N g LISl (9 |grad(u (D)) [ Hdy (9 ]1duide
- W &{ngad{uk(ﬁ)}[;iﬁ) dw}dQ

- W oIt lgrad{q((sz)}liwk d9}dw

By equating the integrands on both sides we have

H(w) = N’ [d6isn® [d¢ Igrad{wk(e, $)} | [A-9]

(A):O.i{
An equivalent expression of [A-9] frequently used is obtained after

replacing sin€d6=-cos® =du vhich gives:

B(w) = N7 fdu [d¢ Igrad{q((u,‘#)}l;i:w [4-10]

Important physically meaning of {A-91 and [A-10] is that: the
inverse of the amplitude of the gradient represents the contributions to
the intensity for the individual orientation =(6,¢) or (u,¢) at the
frequency w=uwy(R).

The conditions when the gradient approaches zero corresponds to a
flattening region in the w (6, ¢) surface as can be seem from {A-7] that

dw, also approaches zero. Hence these points may corresponds to a
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saddle points or a local optimum in the w, syrfaces. The character of
these points can be determined by Wronskian determinant which we will
not discuss further. The significance of equation [A-9] or [A-10] is
that the singularities of the spectrum can be obtained from the
condition when grad(uw (6, ¢)=0 where intensity I(w) is infinity at
w=uy (Q). Hence combining with the character of these critical points
the prominent feature of the spectrum can be determined even before a
complete line shape calculation is performed.

In deriving [A-7], [A-8], [A-9] and [A-10] we have neglected the
broadening function G(w) by assuming that it is a delta function. For
any other type of functions used for G(w) the final powder line shape
will be a results of convolution of G(w) and H(w) as was indicated in
[A-4]. A resuit in applying this function is a smoothing of the
spectrum calculated by the above equations. And in some cases the
prominent features of the spectrum may be smeared out it is smoothed by.
a relative large homogeneous interaction or a inhomogeneous lattice
distribution.

Notice that the assumption that each and every inhomogeneous delta
function is influenced by the same homogeneous broadening effect
represented by g(t) has been made. Therefore the orientationally
independent G(w) has also been assumed. The assumption is valid when it
accounts for the homogeneous broadening due to the nonsecular terms of
the dipolar Hamiltonians. It is not true when the interaction
parameters such as the electric field gradient possess inhomogeneous
distribution, specifically depending on the translational lattice

variable x hence. the broadening function becomes g(x,t). The powder
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spectrum will require further average over x, in this case the
separation of G(w) from the average over the variable @=(6,¢,x) will not
be allowed.

In the following, we shall proceed comparing the two approaches as
indicated in equation [A-2a] and [A-2b] from the point of numerical
stabilities, calculation speed (cpu time ) and the efforts in
programing.

In practical calculation, it was point out earlier by several
authors that the first method is the most straightforward scheme
especially when the relation between orientation and frequency
distribution can be expressed analytically. Usually the integration or
summation can be replaced by evaluating an simpler function such as
elliptical integral of the first kind for shift interaction.
Unfortunately the analytical form does not generally available when the
spatial dependent energy becomes more complicated such as that of the
second order quadrupolar interaction. When function g represents
inhomogeneous lattice distribution which is nonrandom as can be
represented by a Gaussian function but rather a quasicontinuous
distribution which does not posses any analytical form, the above direct
method will be extremely hard to evaluate. Other disadvantages in using
this approach are noted:

First calculating the spectra according the [A-2a] or the related
relations [A-4], [A-6], [A-9], or [A-10] the frequency w, as well as the
gradient will need to be evaluated. The frequencies will then be
truncated to give the corresponding discreet integer channel which

causes some error. Secondly the gradient is evaluated to obtain the
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points where infinity intensity is encountered before convoluting with a
broadening funétion as pointed out before

On the other hand, the second approach according to [A-2b] or the
related relations, [A-1] and {[A-3], requires only the spatial expression
of resonarce frequencies in calculating both the absorption and the
dispersion of the spectrum. Because multiplying a decay func.ion g(t)
is performed at the same time when the transient signal is calculated,
this smooth the spectrum, and resulting the following advantages:

(1). It does not require as large sampling points (or small dot
matrix) as those needed in the previous approach. Usually a 4 by 4
degree mesh is sufficient to give a smooth spectrum with negligible
digital noise.

(2). Since the transient is calculated first, this approach will
not encounter an singularity problem.

(3). 1In addition to generating an artificial transient decay, this
scheme follows the same experimental data manipulation procedure, hence
the calculation can be easily understandable and easily formulated by
following the existing experimental routines.

(4). Since this straight forward. integration method needs to
calculated only a complete cycle of ;he transient signal. This implies
that in the bottle neck of the calculation; only relatively small number
of the powder averaged points in the time domain should be evaluated.
Since the resolution is determined mainly by the number of the Fast
fourier transform, and the cpu for the FFT is essentially negligible in

the calculation this approach can yield better resolved spectrum with

much less calculation cpu.
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APPENDIX B: LIOUVILE SPACE OPERATOR

We first define the Liouville space (L-space) operators as parallel
to that of the Hilbert space (H-space). Ordinary Hilbert operators
(Hamiltonians) in Quantum Mechanics that used to be expressed as
matrices of dimensions of the complete bases are now considered as
"state vectors" in the L-space that linear functions £(Q) in the L-space
(which are matrices) can be expressed as linear combination of its basis
state "vectors". In applying these operators to NMR studies, several
definitions for the L-space basis sets have been found; for example
multipole tensors, fictitious spin -1/2 operators, or simply
multiplication of the angular momentum Iy, Iy, I,. In the following
section we use only the irreducible tensor operators as the complete
basis set.

The linear properties are parallel to that of H-space where all
state vectors can be represented by linear combinations of the complete
basis set. Using the notation |Q) for ket and (Q| for bra as L-space
basis, the linear combination relations in L-space states:

If(Q))=g a IQn) L-space

]f(w)>=§ a juh> H-space

The scalar preduct between two Liouville vectors is defined as:
(A|B)=(B* |A*)=Tr {AB} [B-1]
Vhere A* is the adjoin of A. Liouville operators are then defined

as superoperators denoted by a hat Q. The operation is defined as:
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Q|a)=]10,A]) [B-2a]

alo=|1ata 1 [B-2b]

Notice that a L-operator (a superoperator) operating on L-space
"vectors" implies the commutation relation need to be evaluated. Due to
the linear relation of the commutator, the superoperators are also
linear operators.

When the superoperator is the argument of an exponential, this
occurs frequently in the evolution and the preparation stage of NMR
transient experiments, the function of this operator can be evaluated by

Taylor expansion. Invoking the definition in [B-2], we have

e |3y -1 gt O8)% +5HOW® + .1 [B)

N \3
=B+ \[A,Bl+—514, [4,B]1+—¢{A, [4,[4,B]1]... (B-3]
s eMp e [B-4]

Relation [B-3] and [B-4] can be proved directly by the following:

Let f(N=eB ¥

9

I = A T(N-£(N) A= [A,£(N)]
2

¢ £ )

Higher order derivative can also be found iteratively from this
procedure. Ve nowv inserting the differential terms as the coefficient

in the expansion of f£(X), it gives
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A2 3
£(N= B+ A[&,Bl+ 514, [4,B]1+24, (4, (4,B]1]+. .. [B-5]

When express the above L-space "vector" using Ket and Bra notation,
we arrive at [B-3]. This prove also indicate that notation [B-2] equals
the commutation for L-space operators is consistent with the quantum
mechanic relations.

Notice the different expression given in [B-3] and [B-4] for the
exponential operator. The compact expression in [B-4] means the
infinite expansion of [B-3] should be calculated. The importance of the
exponential L-operators cannot be overemphasized, in studying the spin
dynamics it is always the type of exponential operators that should be
solved, which implies an infinite series of commutators must be
evaluated in general. However there are several simplifications which

can reduce the calculation or yield approximation of the solutions.

Several important and useful relations originated from [B-3] and [B-
4] are discussed below.
(1). It is immediately realized from [B-4] together with the prove

that, the following relations should also exists:

(BIeXA= e~Mp M [B-6]

(2). Vhen a commutator [A,B]= vB exists, where y being a complex

constant. (e.g., for A=Iy and B arbitraty). Inserting the value of the

commutator into [B-3], we found



247

-

M B)= |eMB)= e |B) [B-7]

Infinite commutation now becomes a simple exponential multiplied by

a complex constant.

(3). When A,B commute [A,B]=0, from [B-5] or [B-7] we have

-

™ [8)= & "[B)=[8) [B-8]
e%AIA)=|A) [B-9]

(4). By using [B~1] the scalar product of [B-4] with another L-

space "vector" |C) becomes:

+ M

(CIekAIB)=Tr{C e™B e_AA}=Tr{e—)AC+e)AB}

[B-10]

Similar trace expression as [B-10] can be obtained by using the even

permutation relations.
Tr{XYZW}=Tr{WXYZ}=Tr{YZWX}=Tr {ZWXY}

(3). The special commutation relatioms from (1) tc (3) implies that

[B-10] can be further simplified if [A,B]=XB or [4,C]=XC.

cle™ B)= e Tricr) [B-11]

(6). Using definition [B-1] we may generate the following relation:

ABC...blED:A[B[C...[D,E].ﬁ]] [B-12]
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if n=even

(alB ™|a)= (14,81 [B" 2 |(B,a])= Tr{[B,,[B,a1} [B-13]

(7). Vhen operator B of [B-4] is also an exponential operator, the

following equation can be used to facilitates the calculation.

: M
|

IeB) = exp e B)

[B-14]

The argument at the right of the equation is the same as [B-3],
vhich allows the evaluation of [B-14] by using the inverse of [B-3].

The prove of this relation is straightforward.

-

Let X= e)AlB)

X

M, -M M,
e e B e

1+e%A[B) +%—e B e AAIB)I3

+
oA L
—

- - -

AAIB)+%—eAA|BZ)+%-eAA|B3)+

|l+B 1 g2, é B3, ... )

ekAleB)

This results is found to be particularly useful when the general
rotation of a tensor is related to the Wigner rotation matrix as shown

in Appendix D.
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VAPPENDIX C: DEFINITIONS OF THE EULER ANGLES

Several conventions exist in choosing the so called Euler angles.

The general displacement of a rigid body due to a rotation about a
fixed point may be obtained by performing three rotations about two of
the three mutually perpendicular axis field of the body. We shall
assume a right handed frame of axes. A definition of a positive
rotation about a given axis is the one that carries a right hand screvs
in the positive direction along that axis. For example a positive 90
degree rotation about the Z-axis carries the X-axis into the origional
position of the Y-axis.

A Vigner rotation as described are to be performed in the following
successive order.

(1). A rotation « (0,2n) about the Z-axis. This brings the axes
frame form initial frame S to the intermediate frame S',

(2). A rotation B (0,n) about the Y-axis in the s’ frame. &
resulting frame of axes is symbolized by s”". Notice the Y-axis in this
rotation is usually different from the original Y-axis.

(3). A rotation y (0,2m) about the Z-axis in the S" frame. The
position of this axis depends on the previous rotations «, and 8. The
resulting final axes frame is denoted as S’ ''.

Notice that a unique transformation can be carried out by several
possible values of «,8, and y. There is no 1 to 1 correspondence
between the rotations and the parameters.

For simplifying the discussion we represent a rotation of angle §
about axis C being DC(S) and for successive rotation operations they are

arranged from right to left.



250
The above Wigner rotation is then written as
D( B, v) = Dz"(Y)Dy'(B)Dz(a) [C-1]

In the above description of the general Wigner rotation, the angels
v, B have been defined relative to the axes frame of the moving body in
frame S" and S’ respectively. In many applications it is convenient to
refer these rotation angles to the original rigid frame of axes S.

Since rotation Dy'(B) is equivalent to Dz(a)Dy(B)Dz(-a), also the
rotation Dyn(y) is equivalent to Dy,(B)Dz,(Y)Dy,(—B), and hence to

Dz(a)Dy(S)DZ(Y)Dy(-B)Dz(-a) we may therefore express the above rotation

with another equivalent form, e.g.,
D(e,8,v) = Dz"(Y)Dyr(B)Dz(OO = D3()Dy(8)Dz () [C-2]

This relation states that the Wigner rotation defined above is
equivalent to the following rotation carried out in successive order:
(a) a rotation y about the Z axis; (b) a rotation B about the Y axis;
and (c¢) a rotation « about the Z axis. Notice that the angels o, 8, Y
are nov relative to the original fixed axes frame S.

Both notations are used frequently in studying the spin dynamics as
well as the interaction frame transformation in the line shape

calculations.
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APPENDIX D: VIGNER ROTATION MATRIX ELEMENTS FOR k=1, 3/2 AND 2
The Wigner rotation matrix can be easily constructed using the

following relation:

o)

() (agy) = exp(in'd{S) (8) exp(ine)

wvhere the Euler angles (o, B,v) have been defined in Appendix C. In the
folloving tables, the matrix elements for dmrék) (B) are tabulated in
Table I; k= 1, Table II; k=3/2, and Table III; k=2. Notations X=cosg,

Y=sinf are used.

Table I

Table of elements of dp:§2)(8)

m\\m 2 1 0 -1 _2
1+%,2 1 3.2 -1 1-X.2
2 (—2—) > Y(1+X) 4§ Y - Y(X-1) (=9

1 le(xu) %(2X—1)(X+1) J%XY %—(2X+1)(1-X)%Y(x-1)

3 L2 3
0 'l‘s-Y -NIE-XY

o] Ll

2 . 3 3
(3%°-1) 42— XY 4—8—‘1'

-1 %—Y(X—l) %(2X+1)(1—X) —4%—XY %{2X-l)(X+1) %-Y(X+1)

432

-2 (T) % Y(X-1) g Y :'%— Y(X+1) (=5
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Table II

Table of elements dm,§3/2)(8)

m\m 3/2 172 -1/2 =372
32| % 3x%y 13xy2 ¥
172 —43x%y X(3%%-2)  -1(37%-2) 13372
-2 3%y Y(3v%-2) x(3x%-2)  13x%y
-2 -7 13x7? 3%’y x>
Table III

Table of elements dp,$1)(8)

mEﬁ? 1 0 -1
1 1 1
1| ko iy (-
1 1
0 7 Y X 7 Y

-1 % a-x v % (1+X)
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APPENDIX E: SPHERICAL TENSOR REPRESENTATION OF SPIN OPERATORS

00 10

shift 1 1
3 LoBo 0 = 1By

. -1 -1 1
J-coupling oY I-S 217(1 S -I_S+) E(Iost—ItSO)

. -1 1. 1
Spin-J F I I T HI LT, 1)
B T20 T2:1 T242
. 2 o1
Shift 43 IOBO + 3 IiBO 0
Dipoler &+ (31.5.-I-8) T & (I.8+I S.) 1:s
: 76 (CloSs 7 (IS +1. 5, 7 1.5,
J-Couplin L (31.5.-1-5) T & (1.5 +I S.) 1.1
pling T6 oo~ VIR S MR 7 1o
. | 1 _1 1
Spin-Rotatio ary (3IOJO-I-J) + 7 (IOJ++I+J0) T I+J+
Quadrupole 1% (313_12) ; % (1,1, +1,1,) %— II,
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APPENDIX F: LIST OF IRREDUCIBLE COMPONENTS R% UNDER
SINGLE AND DOUBLE INTERACTION FRAME TRANSFORMATION
Interaction frame transformation for the second rank irreducible
components R% are calculated under single and double transformation.

The irreducible components expressed in its principal axis system are

defined as:

A A

_ 1 (UX A ) icx 1 Xak
P2+2 = P22 = 7 V% %y/t 1%y = 2 n
A Ao
pZil = (sz 1 ayz) =0
A A A
Po = 4372 (0,,-9%)= 3372 &

Vhere anisotropy 8=o,,-0g, asymmetry rF(°yy‘°kx)/°zz‘°0’ and

isotropic value op= (Uxx+°yy+°zz)/3' The three principal values of the

interaction A are Sgxs Oy Izz - Notice we have completely neglected the

antisymmetric elements and hence pp,7 =0 is assumed for all

interactions.
(A) Single interaction frame transformation is as follows:

2 2 invy. i2¢. -2id, a2 in
RO(4,6,4) = 5y e V(e %, (8) +e™ %, (8)jvoy e "%

k]
on(®  1F-1]

(1). Rg(\p,e,q;): p% J—i— sin26c052¢ + p(z) P,(cos®)

2). Ri(w,e,@ ei“’[pé (cos@sinGos2b+isinsine)- pg(‘l% c0s€sind)]

. 2
ele[p2 l+c0s ©

3). R%(w,6,¢) 2(————5———c052¢+icosesinZ¢)+ pg J%-sinze 1
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(B) Double interaction frame transformation is defined as:

N

RX(28,v,0,6) = o2 £ ™ (o)[e 1%, (B+e P % _,(p)]

[y*)

o5 2™ (0) 4y (B [F-2]

(1). RS(Q,B,Y,8,¢) =

p% 43— { Pz(cose)sinzﬁcOSZa m=0
+2c0s@sinB(cosBsinfcos2ocosR-sinfsin2esin®) m=+1
2 l+c0526
+sin 6(—--—2 c0s20c0s29-5infsin2esin2 Q) } m=+2
+ p(z){ pz(cose)-PZ(cosB) - 3cosBsinbecosBsinfeos® m=0, +1
+ %coszesinzﬁr:OSZQ } ) m=+2

(2)' Rg(ar 8!Y99y¢) b
pg { %COSGSinGSiZIZﬁCOSZa m=0
+2(cosze-%)(cos&inﬁcosZoccosSZ—sinﬁsinZasinSZ)

-icos6(cosBsinfeoslasin+sinBsin2 «os Q) m=+1

1~:-cos2 [

+cosesine(—-—-2-—— c0s20c052R-sinfsinZ2esin2 @)}

2
-isine(l*—c‘z’s—s c0s2000829-sinBsin2esin2g)} n=+2
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+ pé{ _4-3— cos€sin®-P,(cosB)
+~lg— cosBsinB [cos26cosuicosBsing]

+4§’— sin’B [cosBsinGos2S-isinGsin2g] }

(3). Ro(e81,6,9) =

pg { %sinzesinzecoshc

-c0s8sin6(cosBsinBeos2ocosR-sinfsin2 esinQ)
isin®(cosBsinBcos2osin@-sinBsin2 ecosR)

2 2
1+Z°S e (1+§°S B co0s2ac0s2R-sinBsinZesin2Q)

_2_ cos e(1+cos g

co0s20sin2@+sinfsinZ2ecos2 )}
2
+ { -l sin 6 P (cosﬁ)
+4-§— cosfsinB(cosEsinGeosR-isinGsinQ)

J— sin 6( -1—@5—@ cos2R-icosEsin2Q) }

m=0

m=+1
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